Supramolecular-orchestrated carrier-free chemodynamic synergists with augmented oxidative damage for potentiated cancer therapy

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyi Meng , Xinyue Sun , Zhaogang Sun , Yue Cheng , Yong Wang , Jun Ye , Yin Xiao , Hongqian Chu
{"title":"Supramolecular-orchestrated carrier-free chemodynamic synergists with augmented oxidative damage for potentiated cancer therapy","authors":"Xiaoyi Meng ,&nbsp;Xinyue Sun ,&nbsp;Zhaogang Sun ,&nbsp;Yue Cheng ,&nbsp;Yong Wang ,&nbsp;Jun Ye ,&nbsp;Yin Xiao ,&nbsp;Hongqian Chu","doi":"10.1016/j.cclet.2024.110765","DOIUrl":null,"url":null,"abstract":"<div><div>Metal ions trigger Fenton/Fenton-like reactions, generating highly toxic hydroxyl radicals (<sup>•</sup>OH) for chemodynamic therapy (CDT), which is crucial in inducing lethal oxidative DNA damage and subsequent cell apoptosis. However, tumor cells can counteract this damage through repair pathways, particularly MutT homolog 1 (MTH1) protein attenuation of oxidative DNA damage. Suppression of MTH1 can enhance CDT efficacy, therefore, orderly integrating Fenton/Fenton-like agents with an MTH1 inhibitor is expected to significantly augment CDT effectiveness. Carrier-free CuTH@CD, self-assembled through the supramolecular orchestration of <em>γ</em>-cyclodextrin (<em>γ</em>-CD) with Cu<sup>2+</sup> and the MTH1 inhibitor TH588, effectively overcoming tumor resistance by greatly amplifying oxidative damage capability. Without additional carriers and mediated by multiple supramolecular regulatory effects, CuTH@CD enables high drug loading content, stability, and uniform size distribution. Upon internalization by tumor cells, CuTH@CD invalidates repair pathways through Cu<sup>2+</sup>-mediated glutathione (GSH) depletion and TH588-mediated MTH1 inhibition. Meanwhile, both generated Cu<sup>+</sup> ions and existing ones within the nanoassembly initiate a Fenton-like reaction, leading to the accumulation of <sup>•</sup>OH. This strategy enhances CDT efficiency with minimal side effects, improving oxidative damage potency and advancing self-delivery nanoplatforms for developing effective chemodynamic tumor therapies.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 5","pages":"Article 110765"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724012816","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal ions trigger Fenton/Fenton-like reactions, generating highly toxic hydroxyl radicals (OH) for chemodynamic therapy (CDT), which is crucial in inducing lethal oxidative DNA damage and subsequent cell apoptosis. However, tumor cells can counteract this damage through repair pathways, particularly MutT homolog 1 (MTH1) protein attenuation of oxidative DNA damage. Suppression of MTH1 can enhance CDT efficacy, therefore, orderly integrating Fenton/Fenton-like agents with an MTH1 inhibitor is expected to significantly augment CDT effectiveness. Carrier-free CuTH@CD, self-assembled through the supramolecular orchestration of γ-cyclodextrin (γ-CD) with Cu2+ and the MTH1 inhibitor TH588, effectively overcoming tumor resistance by greatly amplifying oxidative damage capability. Without additional carriers and mediated by multiple supramolecular regulatory effects, CuTH@CD enables high drug loading content, stability, and uniform size distribution. Upon internalization by tumor cells, CuTH@CD invalidates repair pathways through Cu2+-mediated glutathione (GSH) depletion and TH588-mediated MTH1 inhibition. Meanwhile, both generated Cu+ ions and existing ones within the nanoassembly initiate a Fenton-like reaction, leading to the accumulation of OH. This strategy enhances CDT efficiency with minimal side effects, improving oxidative damage potency and advancing self-delivery nanoplatforms for developing effective chemodynamic tumor therapies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信