Exploring the binding dynamics of anticancer Dihydropyrimidinone derivatives with Serum Albumin: A multispectral approach

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Chandraprakash Gond , Shivani Daksh , Akanksha Mishra , Nikhil Kumar , Anupama Datta , Anjani Kumar Tiwari
{"title":"Exploring the binding dynamics of anticancer Dihydropyrimidinone derivatives with Serum Albumin: A multispectral approach","authors":"Chandraprakash Gond ,&nbsp;Shivani Daksh ,&nbsp;Akanksha Mishra ,&nbsp;Nikhil Kumar ,&nbsp;Anupama Datta ,&nbsp;Anjani Kumar Tiwari","doi":"10.1016/j.chphi.2025.100851","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have investigated the synthesis and characterization of two novel anticancer agents, 5-acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (L1) and 2-Acetyl-4-(3,4-dimethoxy-phenyl)-6-methyl-3,4-dihydro-1H-pyrimidin-2-one (L2), utilizing the Biginelli reaction, which involves the cyclocondensation of urea, an aromatic aldehyde, and a β-ketoester. The structures of these compounds were confirmed through NMR and mass spectroscopy, revealing distinct molecular characteristics. Multi-spectroscopic methods, including UV–visible and fluorescence spectroscopy, demonstrated a static quenching mechanism with a drug-ligand linkage constant on the order of 10<sup>−5</sup> M<sup>−1</sup>, indicating strong binding affinity to bovine serum albumin (BSA). The binding affinities of L1 and L2 to BSA were calculated with ΔG values of -5.68 and -5.48 kcal/mol, respectively, highlighting their potential for effective drug delivery. ADMET studies indicated favorable drug-like properties, including good gastrointestinal absorption and low toxicity profiles. Molecular docking studies identified critical interactions with BSA, particularly involving residues Trp134, Tyr139, and Phe133, which play significant roles in the binding process. These findings underscore the potential of L1 and L2 as promising candidates for anticancer therapy, supported by their robust interactions with serum albumin and favorable pharmacokinetic properties.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100851"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we have investigated the synthesis and characterization of two novel anticancer agents, 5-acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (L1) and 2-Acetyl-4-(3,4-dimethoxy-phenyl)-6-methyl-3,4-dihydro-1H-pyrimidin-2-one (L2), utilizing the Biginelli reaction, which involves the cyclocondensation of urea, an aromatic aldehyde, and a β-ketoester. The structures of these compounds were confirmed through NMR and mass spectroscopy, revealing distinct molecular characteristics. Multi-spectroscopic methods, including UV–visible and fluorescence spectroscopy, demonstrated a static quenching mechanism with a drug-ligand linkage constant on the order of 10−5 M−1, indicating strong binding affinity to bovine serum albumin (BSA). The binding affinities of L1 and L2 to BSA were calculated with ΔG values of -5.68 and -5.48 kcal/mol, respectively, highlighting their potential for effective drug delivery. ADMET studies indicated favorable drug-like properties, including good gastrointestinal absorption and low toxicity profiles. Molecular docking studies identified critical interactions with BSA, particularly involving residues Trp134, Tyr139, and Phe133, which play significant roles in the binding process. These findings underscore the potential of L1 and L2 as promising candidates for anticancer therapy, supported by their robust interactions with serum albumin and favorable pharmacokinetic properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信