A novel hybrid machine learning framework for spatio-temporal analysis of reference evapotranspiration in India

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Dolon Banerjee , Sayantan Ganguly , Wen-Ping Tsai
{"title":"A novel hybrid machine learning framework for spatio-temporal analysis of reference evapotranspiration in India","authors":"Dolon Banerjee ,&nbsp;Sayantan Ganguly ,&nbsp;Wen-Ping Tsai","doi":"10.1016/j.ejrh.2025.102271","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The study focuses on the diverse climatic regions of India, spanning arid, semi-arid, sub-humid, and humid zones.</div></div><div><h3>Study focus</h3><div>This research employs a novel hybrid machine learning (ML) framework for precise spatio-temporal reference evapotranspiration (ET<sub>o</sub>) modelling from 1970 to 2024, addressing the variability in temperature, humidity, and precipitation. Three advanced ML models—Quantile-Adjusted xLSTM Network (QAxLNet), Quantile-Score Diffusion Model (QSDM), and Attentive Deep Quantile-Aware Autoencoder Network (ADAQNet)—are proposed and applied, focusing on relative humidity and temperature as critical predictors. Model validation, conducted with EEFlux-derived ET<sub>o</sub> data and Indian Meteorological Department (IMD) benchmarks, revealed strong alignment across diverse climatic zones.</div></div><div><h3>New hydrological insights for the region</h3><div>The MPI-ESM1–2-HR model under SSP3–7.0 scenarios outperformed other CMIP6 models, with a correlation coefficient of 0.975 and spatial error of 3.55 mm. The ADAQNet demonstrated superior performance, with lowest errors RMSE (Train: 0.2247, Test: 0.2499), and R<sup>2</sup> (Train: 0.96; Test: 0.9571) among the models. ET<sub>o</sub> declined at an average rate of 1.9 mm/year, indicating the role of climate change. ET<sub>o</sub> variability closely mirrored the spatial distribution of the National Building Code (NBC) of India. Seasonal variations were significant, with arid regions (Rajasthan, Gujarat) experiencing the highest increase (2.5–5.1 mm/year). Humid regions showed high sensitivity to RH forecasts, with up to 20 % ET<sub>o</sub> deviation. The study emphasizes the spatial, temporal, and seasonal variations of ET<sub>o</sub> across the region, highlighting its dependence on climatic factors.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102271"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000953","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

The study focuses on the diverse climatic regions of India, spanning arid, semi-arid, sub-humid, and humid zones.

Study focus

This research employs a novel hybrid machine learning (ML) framework for precise spatio-temporal reference evapotranspiration (ETo) modelling from 1970 to 2024, addressing the variability in temperature, humidity, and precipitation. Three advanced ML models—Quantile-Adjusted xLSTM Network (QAxLNet), Quantile-Score Diffusion Model (QSDM), and Attentive Deep Quantile-Aware Autoencoder Network (ADAQNet)—are proposed and applied, focusing on relative humidity and temperature as critical predictors. Model validation, conducted with EEFlux-derived ETo data and Indian Meteorological Department (IMD) benchmarks, revealed strong alignment across diverse climatic zones.

New hydrological insights for the region

The MPI-ESM1–2-HR model under SSP3–7.0 scenarios outperformed other CMIP6 models, with a correlation coefficient of 0.975 and spatial error of 3.55 mm. The ADAQNet demonstrated superior performance, with lowest errors RMSE (Train: 0.2247, Test: 0.2499), and R2 (Train: 0.96; Test: 0.9571) among the models. ETo declined at an average rate of 1.9 mm/year, indicating the role of climate change. ETo variability closely mirrored the spatial distribution of the National Building Code (NBC) of India. Seasonal variations were significant, with arid regions (Rajasthan, Gujarat) experiencing the highest increase (2.5–5.1 mm/year). Humid regions showed high sensitivity to RH forecasts, with up to 20 % ETo deviation. The study emphasizes the spatial, temporal, and seasonal variations of ETo across the region, highlighting its dependence on climatic factors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信