Littlewood-type theorems for random Dirichlet multipliers

IF 1.7 2区 数学 Q1 MATHEMATICS
Guozheng Cheng , Xiang Fang , Chao Liu , Yufeng Lu
{"title":"Littlewood-type theorems for random Dirichlet multipliers","authors":"Guozheng Cheng ,&nbsp;Xiang Fang ,&nbsp;Chao Liu ,&nbsp;Yufeng Lu","doi":"10.1016/j.jfa.2025.110851","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we present a systematic study of random Dirichlet functions. In 1993, Cochran-Shapiro-Ullrich proved the following elegant result on random Dirichlet multipliers <span><span>[21]</span></span>: For any <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><mi>D</mi></math></span>, the Dirichlet space over the unit disk, almost all of its randomizations<span><span><span><math><mo>(</mo><mi>R</mi><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mo>±</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span></span></span> are multipliers of <span><math><mi>D</mi></math></span>. The purpose of this paper is to exploit this result and to extend it in three directions, inspired by the 1930 theorem of Littlewood on random Hardy functions:<ul><li><span>(A)</span><span><div>We introduce a symbol space <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⋆</mo></mrow></msub></math></span> for random multipliers on <span><math><mi>D</mi></math></span> and reformulate (and strengthen) the problem as the characterization of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⋆</mo></mrow></msub></math></span>. We then characterize <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⋆</mo></mrow></msub></math></span> for all <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> when <span><math><mi>α</mi><mo>≠</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> (<span><span>Theorem 55</span></span>). The case <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>α</mi><mo>=</mo><mn>0</mn></math></span> recovers the 1993 result.</div></span></li><li><span>(B)</span><span><div>We obtain a two-parameter version by formulating and solving a Littlewood-type problem for all <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>∈</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> (<span><span>Theorem 69</span></span>). The case <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mn>2</mn></math></span> recovers the 1993 result.</div></span></li><li><span>(C)</span><span><div>We consider <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> and solve completely the two-parameter Littlewood-type problem for these two spaces (<span><span>Theorem 74</span></span> and <span><span>Theorem 77</span></span>). Moreover, the case <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> in <span><span>Lemma 78</span></span> recovers the 1993 result.</div></span></li></ul> Technical challenges in this paper include two aspects. First, this paper is the first systematic study of random Dirichlet functions; consequently, many basic questions need to be answered. In particular, we encounter several fundamental topics, clearly of general interests for random analytic functions yet seldom treated in literature, including:<ul><li><span>(i)</span><span><div>random Carleson measures;</div></span></li><li><span>(ii)</span><span><div>the cotype of Banach spaces of analytic functions;</div></span></li><li><span>(iii)</span><span><div>the norm convergence of random Taylor polynomials; and</div></span></li><li><span>(iv)</span><span><div>the Marcus-Pisier space.</div></span></li></ul> We establish properties for these topics as prompted by our study. The second challenge we face is that many of our results are satisfactory “if and only if” type; to achieve this, we need to construct many examples to show the optimality of various embedding problems.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 12","pages":"Article 110851"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a systematic study of random Dirichlet functions. In 1993, Cochran-Shapiro-Ullrich proved the following elegant result on random Dirichlet multipliers [21]: For any f(z)=n=0anznD, the Dirichlet space over the unit disk, almost all of its randomizations(Rf)(z)=n=0±anzn are multipliers of D. The purpose of this paper is to exploit this result and to extend it in three directions, inspired by the 1930 theorem of Littlewood on random Hardy functions:
  • (A)
    We introduce a symbol space M for random multipliers on D and reformulate (and strengthen) the problem as the characterization of M. We then characterize (Mαp) for all p(0,),α(1,) when αp1 (Theorem 55). The case p=2,α=0 recovers the 1993 result.
  • (B)
    We obtain a two-parameter version by formulating and solving a Littlewood-type problem for all (p,q)(0,)2 (Theorem 69). The case p=q=2 recovers the 1993 result.
  • (C)
    We consider Dp1p and Dp2p and solve completely the two-parameter Littlewood-type problem for these two spaces (Theorem 74 and Theorem 77). Moreover, the case p=2 in Lemma 78 recovers the 1993 result.
Technical challenges in this paper include two aspects. First, this paper is the first systematic study of random Dirichlet functions; consequently, many basic questions need to be answered. In particular, we encounter several fundamental topics, clearly of general interests for random analytic functions yet seldom treated in literature, including:
  • (i)
    random Carleson measures;
  • (ii)
    the cotype of Banach spaces of analytic functions;
  • (iii)
    the norm convergence of random Taylor polynomials; and
  • (iv)
    the Marcus-Pisier space.
We establish properties for these topics as prompted by our study. The second challenge we face is that many of our results are satisfactory “if and only if” type; to achieve this, we need to construct many examples to show the optimality of various embedding problems.
随机狄利克雷乘子的littlewood型定理
本文系统地研究了随机狄利克雷函数。1993年,科克伦-夏皮罗-乌尔里希证明了随机狄利克雷乘数[21]的以下优雅结果:对于任意f(z)=∑n=0∞anzn∈D,单位圆盘上的Dirichlet空间,其几乎所有的随机化(Rf)(z)=∑n=0∞±anzn)都是D的乘子。本文的目的是利用这一结果,并在三个方向上推广它,受到1930年关于随机Hardy函数的Littlewood定理的启发:(A)我们为D上的随机乘子引入一个符号空间M -,并将问题重新表达(并加强)为M -的刻划。然后我们刻画(Mαp) -对于所有p∈(0,∞),α∈(- 1,∞)当α≠p−1(定理55)。(B)对于所有(p,q)∈(0,∞)2(定理69),我们通过构造和求解littlewood型问题得到了一个双参数版本。(C)考虑Dp−1p和Dp−2p,完全解决了这两个空间的两参数littlewood型问题(定理74和定理77)。此外,引理78中p=2的情形恢复了1993年的结果。本文面临的技术挑战包括两个方面。首先,本文首次系统地研究了随机狄利克雷函数;因此,需要回答许多基本问题。特别是,我们遇到了几个基本的主题,显然是对随机解析函数的普遍兴趣,但在文献中很少涉及,包括:(i)随机Carleson测度;(ii)解析函数的Banach空间的共型;(iii)随机泰勒多项式的范数收敛;(iv) Marcus-Pisier空间。根据我们的研究,我们为这些主题建立了属性。我们面临的第二个挑战是,我们的许多结果都是令人满意的“当且仅当”类型;为了实现这一点,我们需要构造许多例子来展示各种嵌入问题的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信