Fengyuan Bao , Feng Li , Oleg Bashkov , Zhiyuan Wang , Ling Sun
{"title":"Stage division and discharge mechanism characterization of micro-arc oxidation based on acoustic emission","authors":"Fengyuan Bao , Feng Li , Oleg Bashkov , Zhiyuan Wang , Ling Sun","doi":"10.1016/j.surfcoat.2025.131964","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic emission monitoring was conducted on the micro-arc oxidation process of the D16AT aluminum alloy plate with double-sided rolled pure aluminum in a silicate system electrolyte. Using the t-SNE algorithm, the recorded signals were classified based on the parameters of the acoustic emission signals. The analysis examined the regularities of the micro-arc oxidation stages under different current density conditions and their correspondence with signal characteristics and categories. Further discussion was held on the passivation and film formation mechanisms during the early, middle, and late stages of micro-arc oxidation. The effective film formation process of MAO was divided into four main stages: initial stage, weak micro-arc discharge, stable micro-arc discharge, and large arc discharge. Additionally, it included five sub-stages: conventional anodizing, weak glow discharge, transition from weak to strong glow discharge, transition from strong glow discharge to weak micro-arc discharge, and weak micro-arc discharge. The transition moments of these stages can be identified and determined by the frequency distribution of AE signals. As the current density increases, the discharge mechanism undergoes stage-wise changes. At different current densities, type-a signals primarily originate from gas glow discharge, while type-b signals are caused by breakdown at the bottom of the passivation film pores. Type-c signals mainly result from stable micro-arc discharge, and the increase in type-d signals marks the transition to a penetration-type strong discharge mechanism.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"502 ","pages":"Article 131964"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225002385","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic emission monitoring was conducted on the micro-arc oxidation process of the D16AT aluminum alloy plate with double-sided rolled pure aluminum in a silicate system electrolyte. Using the t-SNE algorithm, the recorded signals were classified based on the parameters of the acoustic emission signals. The analysis examined the regularities of the micro-arc oxidation stages under different current density conditions and their correspondence with signal characteristics and categories. Further discussion was held on the passivation and film formation mechanisms during the early, middle, and late stages of micro-arc oxidation. The effective film formation process of MAO was divided into four main stages: initial stage, weak micro-arc discharge, stable micro-arc discharge, and large arc discharge. Additionally, it included five sub-stages: conventional anodizing, weak glow discharge, transition from weak to strong glow discharge, transition from strong glow discharge to weak micro-arc discharge, and weak micro-arc discharge. The transition moments of these stages can be identified and determined by the frequency distribution of AE signals. As the current density increases, the discharge mechanism undergoes stage-wise changes. At different current densities, type-a signals primarily originate from gas glow discharge, while type-b signals are caused by breakdown at the bottom of the passivation film pores. Type-c signals mainly result from stable micro-arc discharge, and the increase in type-d signals marks the transition to a penetration-type strong discharge mechanism.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.