{"title":"Immunity responses as checkpoints for efficient transmission of begomoviruses by whiteflies","authors":"Ilana Kuzminsky , Murad Ghanim","doi":"10.1016/j.virol.2025.110462","DOIUrl":null,"url":null,"abstract":"<div><div>Begomoviruses are a group of single stranded DNA plant viruses exclusively transmitted by the sweet potato whitefly <em>Bemisia tabaci</em> in a persistent, circulative manner. After acquisition from plant phloem, this group of viruses circulate and are retained within the whitefly, interacting with tissues, cells and molecular pathways for maintaining the safety of the infective intact virions, by exploiting cellular mechanisms and avoiding degradation by the insect immune responses. During retention, the virions are internalized in the midgut cells, exit and spend hours-days in the hemolymph and cross into salivary gland cells, before transmission. Destroying this group of viruses by the insect immune system seems inefficient for the most part, by examining their very efficient transmission. Thus, within the various sites along the transmission pathway especially in the midgut, it is thought that the immune system with its various layers is activated for avoiding the damage caused by the viruses on one hand, and for ensuring their safe circulation and transmission on the other hand. Begomoviruses have evolved mechanisms for counteracting and exploiting the activated immune system for their safe translocation within the whitefly. In this review, we discuss the various levels of immunity activated against begomoviruses in <em>B. tabaci,</em> taking other pathogen-vector systems as examples and reflecting relevant components on the interactions between <em>B. tabaci</em> and Begomoviruses.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"605 ","pages":"Article 110462"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225000741","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Begomoviruses are a group of single stranded DNA plant viruses exclusively transmitted by the sweet potato whitefly Bemisia tabaci in a persistent, circulative manner. After acquisition from plant phloem, this group of viruses circulate and are retained within the whitefly, interacting with tissues, cells and molecular pathways for maintaining the safety of the infective intact virions, by exploiting cellular mechanisms and avoiding degradation by the insect immune responses. During retention, the virions are internalized in the midgut cells, exit and spend hours-days in the hemolymph and cross into salivary gland cells, before transmission. Destroying this group of viruses by the insect immune system seems inefficient for the most part, by examining their very efficient transmission. Thus, within the various sites along the transmission pathway especially in the midgut, it is thought that the immune system with its various layers is activated for avoiding the damage caused by the viruses on one hand, and for ensuring their safe circulation and transmission on the other hand. Begomoviruses have evolved mechanisms for counteracting and exploiting the activated immune system for their safe translocation within the whitefly. In this review, we discuss the various levels of immunity activated against begomoviruses in B. tabaci, taking other pathogen-vector systems as examples and reflecting relevant components on the interactions between B. tabaci and Begomoviruses.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.