Adams-type inequalities with logarithmic weights in fractional dimensions and the existence of extremals

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Rou Jiang , Wenyan Xu , Caifeng Zhang , Maochun Zhu
{"title":"Adams-type inequalities with logarithmic weights in fractional dimensions and the existence of extremals","authors":"Rou Jiang ,&nbsp;Wenyan Xu ,&nbsp;Caifeng Zhang ,&nbsp;Maochun Zhu","doi":"10.1016/j.bulsci.2025.103586","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we proved a sharp Adams-type inequality with logarithmic weights <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mi>β</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> or <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mfrac><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mi>β</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> in the fractional dimensions. Furthermore, we show the existence of extremals for this kind of inequalities.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"200 ","pages":"Article 103586"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proved a sharp Adams-type inequality with logarithmic weights ωβ(r)=(log1r)β(p1) or ωβ(r)=(loger)β(p1), β(0,1) in the fractional dimensions. Furthermore, we show the existence of extremals for this kind of inequalities.
在本文中,我们证明了在分数维中具有对数权重 ωβ(r)=(log1r)β(p-1) 或 ωβ(r)=(loger)β(p-1), β∈(0,1) 的尖锐亚当斯型不等式。此外,我们还证明了这类不等式存在极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信