A comprehensive review on hydrophobic modification of biopolymer composites for food packaging applications

IF 8.5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Sneha Sabu Mathew , Amit K. Jaiswal , Swarna Jaiswal
{"title":"A comprehensive review on hydrophobic modification of biopolymer composites for food packaging applications","authors":"Sneha Sabu Mathew ,&nbsp;Amit K. Jaiswal ,&nbsp;Swarna Jaiswal","doi":"10.1016/j.fpsl.2025.101464","DOIUrl":null,"url":null,"abstract":"<div><div>Biopolymers derived from biological sources are safe, abundant, eco-friendly, and economical substitutes for synthetic polymers. However, intrinsic properties of biopolymer films, such as abundant hydrophilic groups, weak mechanical properties, low resistance to heat, and poor barrier properties, need to be addressed to restrict them from being used before employing them for food packaging applications. Hydrophobic modification of biopolymers is crucial to enhance their suitability for food packaging applications. Various approaches, including nanocomposites, essential oil incorporation, and chemical modifications have been investigated to address the limitations of biopolymer packaging materials. Utilizing excipients which are deemed safe for consumption effectively achieves the requisite hydrophobicity in food packaging. Opting for food-safe excipients not only upholds the safety standards of packaged food but also aligns with environmentally conscious practices. These efforts ensure that biopolymer-based films and coatings meet the health and safety standards and the mechanical, thermal, and barrier properties required for food packaging. Moreover, this transition also underscores a commitment to sustainability and addresses the escalating imperative for eco-friendly solutions within food packaging. This article explores the various strategies developed for improving the water-interactive characteristics of materials intended for food contact. Furthermore, it elaborates on techniques that can enhance the hydrophobicity of biopolymers employed for food packaging. Additionally, regulations about the use of biopolymers in food packaging have also been discussed in detail, with particular emphasis on the applications of these modifications in active and intelligent food packaging.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"48 ","pages":"Article 101464"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289425000341","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biopolymers derived from biological sources are safe, abundant, eco-friendly, and economical substitutes for synthetic polymers. However, intrinsic properties of biopolymer films, such as abundant hydrophilic groups, weak mechanical properties, low resistance to heat, and poor barrier properties, need to be addressed to restrict them from being used before employing them for food packaging applications. Hydrophobic modification of biopolymers is crucial to enhance their suitability for food packaging applications. Various approaches, including nanocomposites, essential oil incorporation, and chemical modifications have been investigated to address the limitations of biopolymer packaging materials. Utilizing excipients which are deemed safe for consumption effectively achieves the requisite hydrophobicity in food packaging. Opting for food-safe excipients not only upholds the safety standards of packaged food but also aligns with environmentally conscious practices. These efforts ensure that biopolymer-based films and coatings meet the health and safety standards and the mechanical, thermal, and barrier properties required for food packaging. Moreover, this transition also underscores a commitment to sustainability and addresses the escalating imperative for eco-friendly solutions within food packaging. This article explores the various strategies developed for improving the water-interactive characteristics of materials intended for food contact. Furthermore, it elaborates on techniques that can enhance the hydrophobicity of biopolymers employed for food packaging. Additionally, regulations about the use of biopolymers in food packaging have also been discussed in detail, with particular emphasis on the applications of these modifications in active and intelligent food packaging.
食品包装用生物高分子复合材料疏水改性研究综述
从生物来源提取的生物聚合物是合成聚合物的安全、丰富、环保、经济的替代品。然而,生物聚合物薄膜的固有特性,如丰富的亲水性基团、弱的机械性能、低的耐热性和差的阻隔性,需要解决,以限制它们在用于食品包装应用之前的使用。对生物聚合物进行疏水改性是提高其在食品包装应用中的适用性的关键。人们研究了各种方法,包括纳米复合材料、精油掺入和化学改性,以解决生物聚合物包装材料的局限性。使用安全的赋形剂可以有效地达到食品包装所需的疏水性。选择食品安全辅料不仅符合包装食品的安全标准,也符合环保意识的做法。这些努力确保基于生物聚合物的薄膜和涂层符合健康和安全标准,以及食品包装所需的机械、热和阻隔性能。此外,这一转变还强调了对可持续性的承诺,并解决了食品包装中环保解决方案日益紧迫的问题。本文探讨了为改善用于食品接触的材料的水相互作用特性而开发的各种策略。此外,它阐述了技术,可以提高生物聚合物的疏水性用于食品包装。此外,还详细讨论了在食品包装中使用生物聚合物的法规,特别强调了这些改性在活性和智能食品包装中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Packaging and Shelf Life
Food Packaging and Shelf Life Agricultural and Biological Sciences-Food Science
CiteScore
14.00
自引率
8.80%
发文量
214
审稿时长
70 days
期刊介绍: Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信