A linear delay algorithm in SD set system and its application to subgraph enumeration

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Takumi Tada, Kazuya Haraguchi
{"title":"A linear delay algorithm in SD set system and its application to subgraph enumeration","authors":"Takumi Tada,&nbsp;Kazuya Haraguchi","doi":"10.1016/j.jcss.2025.103637","DOIUrl":null,"url":null,"abstract":"<div><div>For a set system <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mi>C</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>V</mi></mrow></msup><mo>)</mo></math></span>, we call each <span><math><mi>C</mi><mo>∈</mo><mi>C</mi></math></span> a component. A nonempty subset <span><math><mi>Y</mi><mo>⊊</mo><mi>C</mi></math></span> is a removable set (RS) of <em>C</em> if <span><math><mi>C</mi><mo>∖</mo><mi>Y</mi></math></span> is a component. We say that a set system has subset-disjoint (SD) property if, for any two components <span><math><mi>C</mi><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊊</mo><mi>C</mi></math></span>, every minimal RS <em>Y</em> of <em>C</em> satisfies either <span><math><mi>Y</mi><mo>⊆</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> or <span><math><mi>Y</mi><mo>∩</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mo>∅</mo></math></span>. Assuming that an SD set system is implicitly given by an oracle that returns a minimal RS of a component, we provide an algorithm that enumerates all components in linear time/space with respect to <span><math><mo>|</mo><mi>V</mi><mo>|</mo></math></span> and oracle running time/space. We then extend this algorithm to linear-delay enumeration of all 2-edge-connected (or 2-vertex-connected) induced subgraphs in an undirected graph and of all strongly connected subgraphs in a digraph.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"152 ","pages":"Article 103637"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000194","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

For a set system (V,C2V), we call each CC a component. A nonempty subset YC is a removable set (RS) of C if CY is a component. We say that a set system has subset-disjoint (SD) property if, for any two components C,C with CC, every minimal RS Y of C satisfies either YC or YC=. Assuming that an SD set system is implicitly given by an oracle that returns a minimal RS of a component, we provide an algorithm that enumerates all components in linear time/space with respect to |V| and oracle running time/space. We then extend this algorithm to linear-delay enumeration of all 2-edge-connected (or 2-vertex-connected) induced subgraphs in an undirected graph and of all strongly connected subgraphs in a digraph.
SD集合系统中的一种线性延迟算法及其在子图枚举中的应用
对于集合系统(V,C≤2V),我们称每个C∈C为一个分量。如果C≠Y是一个分量,一个非空子集Y≠C是C的一个可移动集(RS)。如果对于任意两个分量C,C′与C′≠C,则C的每一个极小RS Y满足Y≠C′或Y∩C′=∅,则我们说一个集合系统具有子集不相交(SD)性质。假设一个SD集合系统是由一个oracle隐式给出的,它返回一个组件的最小RS,我们提供了一个算法,该算法在线性时间/空间中枚举关于|V|和oracle运行时间/空间的所有组件。然后,我们将该算法推广到无向图中所有2边连通(或2点连通)诱导子图和有向图中所有强连通子图的线性延迟枚举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信