M. Gagana , B. R. Radha Krushna , S.C. Sharma , S Sharmila , R. Meenakshi , A. Devikala , Samir Sahu , K. Manjunatha , Sheng Yun Wu , R. Arunakumar , H. Nagabhushana
{"title":"Green synthesis of carbon dots encapsulated MoO3:La3+ for enhanced photocatalytic degradation, dactyloscopy and real-time FP detection using YOLOv8x","authors":"M. Gagana , B. R. Radha Krushna , S.C. Sharma , S Sharmila , R. Meenakshi , A. Devikala , Samir Sahu , K. Manjunatha , Sheng Yun Wu , R. Arunakumar , H. Nagabhushana","doi":"10.1016/j.jtice.2025.106032","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Industrial dye pollution poses severe environmental threats, necessitating efficient and sustainable removal strategies. Additionally, forensic and biometric applications require high-resolution fingerprints (FPs) detection for accurate identification. This study develops carbon dots (CDs) integrated MoO<sub>3</sub>:1 %La<sup>3+</sup> nanocomposites (NCs) for photocatalytic dye degradation and forensic applications, offering a multifunctional approach to environmental remediation and FP visualization.</div></div><div><h3>Methods</h3><div>The NCs were synthesized using a green approach with neem leaf extracts and characterized via XRD, FTIR, SEM, TEM, XPS, and UV-Vis spectroscopy. Their photocatalytic efficiency was assessed through methyl orange (MO) degradation, while seed germination tests using <em>Pisum sativum</em> evaluated environmental safety. Additionally, the <em>YOLOv8x</em> deep-learning model was trained for enhanced latent fingerprint (LFP) detection and analysis.</div></div><div><h3>Significant Findings</h3><div>NCs exhibited 99.4 % MO degradation within 70 min, detecting MO at concentrations as low as 0.032 μM. Post-treatment analysis confirmed complete degradation. Seed germination tests showed improved root (6.24 cm), shoot (7.83 cm), and germination energy (84 %), validating detoxification. NCs enhanced FP visualization, while <em>YOLOv8x</em> achieved over 90 % mean average precision (mAP) in minutiae detection, outperforming traditional methods. This work establishes CDs/MoO<sub>3</sub>:1 %La<sup>3+</sup> NCs as a multifunctional solution for environmental remediation, agriculture, and forensic applications.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"170 ","pages":"Article 106032"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025000859","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Industrial dye pollution poses severe environmental threats, necessitating efficient and sustainable removal strategies. Additionally, forensic and biometric applications require high-resolution fingerprints (FPs) detection for accurate identification. This study develops carbon dots (CDs) integrated MoO3:1 %La3+ nanocomposites (NCs) for photocatalytic dye degradation and forensic applications, offering a multifunctional approach to environmental remediation and FP visualization.
Methods
The NCs were synthesized using a green approach with neem leaf extracts and characterized via XRD, FTIR, SEM, TEM, XPS, and UV-Vis spectroscopy. Their photocatalytic efficiency was assessed through methyl orange (MO) degradation, while seed germination tests using Pisum sativum evaluated environmental safety. Additionally, the YOLOv8x deep-learning model was trained for enhanced latent fingerprint (LFP) detection and analysis.
Significant Findings
NCs exhibited 99.4 % MO degradation within 70 min, detecting MO at concentrations as low as 0.032 μM. Post-treatment analysis confirmed complete degradation. Seed germination tests showed improved root (6.24 cm), shoot (7.83 cm), and germination energy (84 %), validating detoxification. NCs enhanced FP visualization, while YOLOv8x achieved over 90 % mean average precision (mAP) in minutiae detection, outperforming traditional methods. This work establishes CDs/MoO3:1 %La3+ NCs as a multifunctional solution for environmental remediation, agriculture, and forensic applications.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.