Lattice Boltzmann flux solver for immiscible three-phase fluids boiling with large density ratio and spontaneous nucleation

IF 3.6 2区 工程技术 Q1 MECHANICS
Da Zhang , Yan Li
{"title":"Lattice Boltzmann flux solver for immiscible three-phase fluids boiling with large density ratio and spontaneous nucleation","authors":"Da Zhang ,&nbsp;Yan Li","doi":"10.1016/j.ijmultiphaseflow.2025.105174","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a three-phase boiling lattice Boltzmann flux solver (TB-LBFS) based on phase field theory. The TB-LBFS is capable of achieving spontaneous nucleation in nucleate boiling and handling multiphase flow calculations with large density ratios, such as 1:1000. The source terms in the control equations of TB-LBFS can be freely added and solved, offering high flexibility for secondary development. Additionally, TB-LBFS addresses the limitation of previous phase field boiling models that could not achieve spontaneous nucleation. The model's excellent capability in simulating three-phase flow phase transitions has been tested through multiple classic 2D and 3D cases, including 2D composite droplet evaporation, the 2D Leidenfrost phenomenon, and 3D nucleate boiling in both two-phase and three-phase systems.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"187 ","pages":"Article 105174"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000527","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a three-phase boiling lattice Boltzmann flux solver (TB-LBFS) based on phase field theory. The TB-LBFS is capable of achieving spontaneous nucleation in nucleate boiling and handling multiphase flow calculations with large density ratios, such as 1:1000. The source terms in the control equations of TB-LBFS can be freely added and solved, offering high flexibility for secondary development. Additionally, TB-LBFS addresses the limitation of previous phase field boiling models that could not achieve spontaneous nucleation. The model's excellent capability in simulating three-phase flow phase transitions has been tested through multiple classic 2D and 3D cases, including 2D composite droplet evaporation, the 2D Leidenfrost phenomenon, and 3D nucleate boiling in both two-phase and three-phase systems.

Abstract Image

晶格玻尔兹曼通量求解具有大密度比沸腾和自发成核的不混相三相流体
在这项研究中,我们提出了一个基于相场理论的三相沸腾晶格玻尔兹曼通量求解器(TB-LBFS)。TB-LBFS能够在核沸腾中实现自发成核,并处理大密度比(如1:1000)的多相流计算。TB-LBFS控制方程中的源项可以自由添加和求解,为二次开发提供了很高的灵活性。此外,TB-LBFS解决了以往相场沸腾模型无法实现自发成核的局限性。通过两相和三相体系的二维复合液滴蒸发、二维Leidenfrost现象和三维核沸腾等经典二维和三维实例,验证了该模型模拟三相流动相变的卓越能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信