Self-triggered neural tracking control for discrete-time nonlinear systems via adaptive critic learning

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lingzhi Hu, Ding Wang, Gongming Wang, Junfei Qiao
{"title":"Self-triggered neural tracking control for discrete-time nonlinear systems via adaptive critic learning","authors":"Lingzhi Hu,&nbsp;Ding Wang,&nbsp;Gongming Wang,&nbsp;Junfei Qiao","doi":"10.1016/j.neunet.2025.107280","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel self-triggered optimal tracking control method is developed based on the online action–critic technique for discrete-time nonlinear systems. First, an augmented plant is constructed by integrating the system state with the reference trajectory. This transformation redefines the optimal tracking control design as the optimal regulation issue of the reconstructed nonlinear error system. Subsequently, under the premise of ensuring the controlled system stability, a self-sampling function that depends solely on the sampling tracking error is devised, thereby determining the next triggering instant. This approach not only effectively reduces the computational burden but also eliminates the need for continuous evaluation of the triggering condition, as required in traditional event-based methods. Furthermore, the developed control method can be found to possess excellent triggering performance. The model, critic, and action neural networks are constructed to implement the online critic learning algorithm, enabling real-time adjustment of the tracking control policy to achieve optimal performance. Finally, an experimental plant with nonlinear characteristics is presented to illustrate the overall performance of the proposed online self-triggered tracking control strategy.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107280"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001595","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel self-triggered optimal tracking control method is developed based on the online action–critic technique for discrete-time nonlinear systems. First, an augmented plant is constructed by integrating the system state with the reference trajectory. This transformation redefines the optimal tracking control design as the optimal regulation issue of the reconstructed nonlinear error system. Subsequently, under the premise of ensuring the controlled system stability, a self-sampling function that depends solely on the sampling tracking error is devised, thereby determining the next triggering instant. This approach not only effectively reduces the computational burden but also eliminates the need for continuous evaluation of the triggering condition, as required in traditional event-based methods. Furthermore, the developed control method can be found to possess excellent triggering performance. The model, critic, and action neural networks are constructed to implement the online critic learning algorithm, enabling real-time adjustment of the tracking control policy to achieve optimal performance. Finally, an experimental plant with nonlinear characteristics is presented to illustrate the overall performance of the proposed online self-triggered tracking control strategy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信