Mouadh Rafai , Diana Salciarini , Philip J. Vardon
{"title":"The thermo-mechanical impact of long-term energy pile use","authors":"Mouadh Rafai , Diana Salciarini , Philip J. Vardon","doi":"10.1016/j.renene.2025.122693","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents quantitative data from a field test on a new type of energy pile, called a displacement cast in situ energy pile. The test pile was installed in a multilayered soft soils and subjected to a continuous cooling for 3 months, with no mechanical load. Afterwards, the pile was loaded to a specific target of 20 or 60 % of its calculated ultimate bearing capacity and then subjected to up to five thermal cycles. Under zero mechanical load, the results revealed that the compressive/tensile stresses coexist along the pile. Under low mechanical load (20 %), thermal cycles induced irreversible residual contractive strains and stresses as well as a limited pile head settlement. Under high mechanical load (60 %) and extreme operating conditions, i.e., negative temperatures which could have indicated a frozen interface, further irreversible settlements observed at the end of this test. Mechanical pile tests however indicated no impact of stress history (including the freezing test) on the shaft resistance and the overall pile-bearing capacity.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122693"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125003556","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents quantitative data from a field test on a new type of energy pile, called a displacement cast in situ energy pile. The test pile was installed in a multilayered soft soils and subjected to a continuous cooling for 3 months, with no mechanical load. Afterwards, the pile was loaded to a specific target of 20 or 60 % of its calculated ultimate bearing capacity and then subjected to up to five thermal cycles. Under zero mechanical load, the results revealed that the compressive/tensile stresses coexist along the pile. Under low mechanical load (20 %), thermal cycles induced irreversible residual contractive strains and stresses as well as a limited pile head settlement. Under high mechanical load (60 %) and extreme operating conditions, i.e., negative temperatures which could have indicated a frozen interface, further irreversible settlements observed at the end of this test. Mechanical pile tests however indicated no impact of stress history (including the freezing test) on the shaft resistance and the overall pile-bearing capacity.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.