Experimental study on the effects of simulated EGR on ammonia-diesel dual-fuel combustion in a constant volume chamber

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Yuqiang Li , Hongyi Cao , Ruoyun Lei , Chengwei Deng
{"title":"Experimental study on the effects of simulated EGR on ammonia-diesel dual-fuel combustion in a constant volume chamber","authors":"Yuqiang Li ,&nbsp;Hongyi Cao ,&nbsp;Ruoyun Lei ,&nbsp;Chengwei Deng","doi":"10.1016/j.energy.2025.135258","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of exhaust gas recirculation (EGR) on ammonia-diesel dual-fuel combustion through optical experiments in a constant volume chamber, varying ambient temperatures (700 K–800 K) and oxygen concentrations (11%–21 %). The results reveal that the combustion process can be divided into three stages based on flame characteristics: diesel premixed combustion, diesel diffusion combustion, and ammonia premixed combustion. As the ambient temperature and oxygen concentration decrease, the luminescence region of the NH<sub>2</sub> group narrows, and its luminescence intensity diminishes, indicating lower NO emissions. Compared to the decrease in oxygen concentration from 16 % to 11 %, the reduction from 21 % to 16 % has a less pronounced impact on ammonia-diesel combustion performance. The peak heat release rate (HRR) shows a non-monotonic trend, initially increasing and then decreasing as the temperature drops. Ammonia-diesel combustion deteriorates at extremely low ambient temperatures and oxygen concentrations, exhibiting a double-peak HRR. These findings suggest that mild EGR can be applied to real ammonia-diesel engines to effectively reduce NO emissions, although it may slightly compromise combustion performance.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"320 ","pages":"Article 135258"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225009004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of exhaust gas recirculation (EGR) on ammonia-diesel dual-fuel combustion through optical experiments in a constant volume chamber, varying ambient temperatures (700 K–800 K) and oxygen concentrations (11%–21 %). The results reveal that the combustion process can be divided into three stages based on flame characteristics: diesel premixed combustion, diesel diffusion combustion, and ammonia premixed combustion. As the ambient temperature and oxygen concentration decrease, the luminescence region of the NH2 group narrows, and its luminescence intensity diminishes, indicating lower NO emissions. Compared to the decrease in oxygen concentration from 16 % to 11 %, the reduction from 21 % to 16 % has a less pronounced impact on ammonia-diesel combustion performance. The peak heat release rate (HRR) shows a non-monotonic trend, initially increasing and then decreasing as the temperature drops. Ammonia-diesel combustion deteriorates at extremely low ambient temperatures and oxygen concentrations, exhibiting a double-peak HRR. These findings suggest that mild EGR can be applied to real ammonia-diesel engines to effectively reduce NO emissions, although it may slightly compromise combustion performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信