Ali Keçebaş , Onur Vahip Güler , Aleksandar G. Georgiev , Emine Yağız Gürbüz , Azim Doğuş Tuncer , İstemihan Şahinkesen
{"title":"Thermodynamic analysis and efficiency enhancement of PV/T systems using ethanol-based phase change material","authors":"Ali Keçebaş , Onur Vahip Güler , Aleksandar G. Georgiev , Emine Yağız Gürbüz , Azim Doğuş Tuncer , İstemihan Şahinkesen","doi":"10.1016/j.energy.2025.135165","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of integrating an ethanol-based phase change material (PCM) cooling system on the performance of PV panels. The primary aim is to enhance thermal management and improve efficiency by utilizing ethanol's phase-changing properties within a glass dome selectively positioned over the PV panels. Experiments were conducted under controlled environmental conditions with varying absorber thicknesses (1.5 cm, 2 cm, and 2.5 cm) to assess their effects on PV performance. Energy and exergy analyses were employed to evaluate the thermal and electrical efficiencies. Results showed that the 2 cm thick ethanol-filled absorber significantly reduced surface temperatures, achieving an average front-side temperature of 51 °C and backside temperature of 45 °C. This configuration enhanced electrical efficiency to 18 % and thermal efficiency to 22 %. Ethanol-based absorbers demonstrated superior thermal management, maintaining optimal operating conditions and prolonging energy output. The front-surface placement of the cooling system further enhanced thermal and electrical performance by addressing overheating directly at the solar incidence point, though future research should focus on long-term durability and transparency concerns. The study concluded that integrating ethanol as a PCM in PV/T systems can effectively mitigate efficiency losses due to overheating. This innovative approach holds promise for advancing solar energy technology and improving PV panel reliability and efficiency. Future research should focus on the long-term stability and interactions of ethanol in PCM systems, performance under varied climatic conditions, and economic feasibility for large-scale applications.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"320 ","pages":"Article 135165"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225008072","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of integrating an ethanol-based phase change material (PCM) cooling system on the performance of PV panels. The primary aim is to enhance thermal management and improve efficiency by utilizing ethanol's phase-changing properties within a glass dome selectively positioned over the PV panels. Experiments were conducted under controlled environmental conditions with varying absorber thicknesses (1.5 cm, 2 cm, and 2.5 cm) to assess their effects on PV performance. Energy and exergy analyses were employed to evaluate the thermal and electrical efficiencies. Results showed that the 2 cm thick ethanol-filled absorber significantly reduced surface temperatures, achieving an average front-side temperature of 51 °C and backside temperature of 45 °C. This configuration enhanced electrical efficiency to 18 % and thermal efficiency to 22 %. Ethanol-based absorbers demonstrated superior thermal management, maintaining optimal operating conditions and prolonging energy output. The front-surface placement of the cooling system further enhanced thermal and electrical performance by addressing overheating directly at the solar incidence point, though future research should focus on long-term durability and transparency concerns. The study concluded that integrating ethanol as a PCM in PV/T systems can effectively mitigate efficiency losses due to overheating. This innovative approach holds promise for advancing solar energy technology and improving PV panel reliability and efficiency. Future research should focus on the long-term stability and interactions of ethanol in PCM systems, performance under varied climatic conditions, and economic feasibility for large-scale applications.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.