Coriolis massflow measurement errors due to inhomogeneous entrained particles: An analytical model

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Stephan Wernli , Lilach Goren Huber , Nicolas P. Avdelidis , Alfred Rieder
{"title":"Coriolis massflow measurement errors due to inhomogeneous entrained particles: An analytical model","authors":"Stephan Wernli ,&nbsp;Lilach Goren Huber ,&nbsp;Nicolas P. Avdelidis ,&nbsp;Alfred Rieder","doi":"10.1016/j.flowmeasinst.2025.102847","DOIUrl":null,"url":null,"abstract":"<div><div>The Coriolis mass flow meter is a critical instrument used in various industries for the precise measurement of mass flow rate and density of a fluid. Despite its widespread use, the impact of entrained particles within the fluid can significantly affect the accuracy of the meter, leading to potential errors and inefficiencies. Previous calculations of the mass flow errors assumed that the entrained particles are uniformly distributed along the axis of the measurement tube. In this paper we extend the analytical investigation of the measurement errors beyond the previous work to the regime of non-uniform density distribution of the entrained particles. We provide a clear analysis of the contributions of various physical effects in this regime to the mass-flow measurement error.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"103 ","pages":"Article 102847"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598625000391","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Coriolis mass flow meter is a critical instrument used in various industries for the precise measurement of mass flow rate and density of a fluid. Despite its widespread use, the impact of entrained particles within the fluid can significantly affect the accuracy of the meter, leading to potential errors and inefficiencies. Previous calculations of the mass flow errors assumed that the entrained particles are uniformly distributed along the axis of the measurement tube. In this paper we extend the analytical investigation of the measurement errors beyond the previous work to the regime of non-uniform density distribution of the entrained particles. We provide a clear analysis of the contributions of various physical effects in this regime to the mass-flow measurement error.
非均匀夹带粒子引起的科里奥利质量流测量误差:一个解析模型
科里奥利质量流量计是用于各种行业的质量流量和流体密度的精确测量的关键仪器。尽管它被广泛使用,但流体中夹带颗粒的影响会显著影响仪表的精度,导致潜在的误差和低效率。先前的质量流误差计算假设携带的颗粒沿测量管的轴线均匀分布。在本文中,我们将测量误差的分析研究从以往的工作扩展到携带粒子的密度分布不均匀的情况。我们提供了在这种情况下各种物理效应对质量流量测量误差的贡献的明确分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow Measurement and Instrumentation
Flow Measurement and Instrumentation 工程技术-工程:机械
CiteScore
4.30
自引率
13.60%
发文量
123
审稿时长
6 months
期刊介绍: Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions. FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest: Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible. Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems. Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories. Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信