{"title":"Dynamic and static behaviour of geopolymer concrete for sustainable infrastructure development: Prospects, challenges, and performance review","authors":"Amer Hassan, Chunwei Zhang","doi":"10.1016/j.compstruct.2025.118984","DOIUrl":null,"url":null,"abstract":"<div><div>Geopolymer concrete (GPC) is increasingly recognized as a sustainable and environmental option to conventional concrete due to its utilization of industrial byproducts. This paper thoroughly investigates the dynamic and static behaviour of GPC, focusing on its mechanical properties, durability, and resistance to impact and seismic loads. Also, this article compares the experimental results reported in previous studies with a predicted model to justify the results obtained by experiments. According to the evaluation and review of previous studies, it could be summarised that no individual factor influences the structural properties of GPC. Additionally, efforts should be made to determine the interrelationship between various factors in order to facilitate the creation of a GPC that is both cost-effective and sustainable for the environment. Further, emphasis is placed on fibre reinforcement, which enhances the material’s dynamic performance. Also, the dynamic behaviour of GPC, including impact and seismic resistance, is still uncertain due to the lack of studies on this subject, and more investigation on this matter must be undertaken to generate a comprehensive picture of the dynamic behaviour of these materials before introducing them to the industry.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"359 ","pages":"Article 118984"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325001497","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Geopolymer concrete (GPC) is increasingly recognized as a sustainable and environmental option to conventional concrete due to its utilization of industrial byproducts. This paper thoroughly investigates the dynamic and static behaviour of GPC, focusing on its mechanical properties, durability, and resistance to impact and seismic loads. Also, this article compares the experimental results reported in previous studies with a predicted model to justify the results obtained by experiments. According to the evaluation and review of previous studies, it could be summarised that no individual factor influences the structural properties of GPC. Additionally, efforts should be made to determine the interrelationship between various factors in order to facilitate the creation of a GPC that is both cost-effective and sustainable for the environment. Further, emphasis is placed on fibre reinforcement, which enhances the material’s dynamic performance. Also, the dynamic behaviour of GPC, including impact and seismic resistance, is still uncertain due to the lack of studies on this subject, and more investigation on this matter must be undertaken to generate a comprehensive picture of the dynamic behaviour of these materials before introducing them to the industry.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.