Hugo J. Bello , Manuel Ojeda-Hernández , Domingo López-Rodríguez , Carlos Bejines
{"title":"Fuzzy time series analysis: Expanding the scope with fuzzy numbers","authors":"Hugo J. Bello , Manuel Ojeda-Hernández , Domingo López-Rodríguez , Carlos Bejines","doi":"10.1016/j.ijar.2025.109387","DOIUrl":null,"url":null,"abstract":"<div><div>This article delves into the process of fuzzifying time series, which entails converting a conventional time series into a time-indexed sequence of fuzzy numbers. The focus lies on the well-established practice of fuzzifying time series when a predefined degree of uncertainty is known, employing fuzzy numbers to quantify volatility or vagueness. To address practical challenges associated with volatility or vagueness quantification, we introduce the concept of informed time series. An algorithm is proposed to derive fuzzy time series, and findings include the examination of structural breaks within the realm of fuzzy time series. Additionally, this article underscores the significance of employing topological tools in the analysis of fuzzy time series, accentuating the role of these tools in extracting insights and unraveling intricate relationships within the data.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"180 ","pages":"Article 109387"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25000283","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article delves into the process of fuzzifying time series, which entails converting a conventional time series into a time-indexed sequence of fuzzy numbers. The focus lies on the well-established practice of fuzzifying time series when a predefined degree of uncertainty is known, employing fuzzy numbers to quantify volatility or vagueness. To address practical challenges associated with volatility or vagueness quantification, we introduce the concept of informed time series. An algorithm is proposed to derive fuzzy time series, and findings include the examination of structural breaks within the realm of fuzzy time series. Additionally, this article underscores the significance of employing topological tools in the analysis of fuzzy time series, accentuating the role of these tools in extracting insights and unraveling intricate relationships within the data.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.