Jason Pillay , Andriette Bekker , Johannes Ferreira , Mohammad Arashi
{"title":"Soft computing for the posterior of a matrix t graphical network","authors":"Jason Pillay , Andriette Bekker , Johannes Ferreira , Mohammad Arashi","doi":"10.1016/j.ijar.2025.109397","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling noisy data in a network context remains an unavoidable obstacle; fortunately, random matrix theory may comprehensively describe network environments. Noisy data necessitates the probabilistic characterization of these networks using matrix variate models. Denoising network data using a Bayesian approach is not common in surveyed literature. Therefore, this paper adopts the Bayesian viewpoint and introduces a new version of the matrix variate t graphical network. This model's prior beliefs rely on the matrix variate gamma distribution to handle the noise process flexibly; from a statistical learning viewpoint, such a theoretical consideration benefits the comprehension of structures and processes that cause network-based noise in data as part of machine learning and offers real-world interpretation. A proposed Gibbs algorithm is provided for computing and approximating the resulting posterior probability distribution of interest to assess the considered model's network centrality measures. Experiments with synthetic and real-world stock price data are performed to validate the proposed algorithm's capabilities and show that this model has wider flexibility than the model proposed by <span><span>[13]</span></span>.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"180 ","pages":"Article 109397"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25000386","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling noisy data in a network context remains an unavoidable obstacle; fortunately, random matrix theory may comprehensively describe network environments. Noisy data necessitates the probabilistic characterization of these networks using matrix variate models. Denoising network data using a Bayesian approach is not common in surveyed literature. Therefore, this paper adopts the Bayesian viewpoint and introduces a new version of the matrix variate t graphical network. This model's prior beliefs rely on the matrix variate gamma distribution to handle the noise process flexibly; from a statistical learning viewpoint, such a theoretical consideration benefits the comprehension of structures and processes that cause network-based noise in data as part of machine learning and offers real-world interpretation. A proposed Gibbs algorithm is provided for computing and approximating the resulting posterior probability distribution of interest to assess the considered model's network centrality measures. Experiments with synthetic and real-world stock price data are performed to validate the proposed algorithm's capabilities and show that this model has wider flexibility than the model proposed by [13].
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.