Yiping Liu , Tiantian Chen , Hyungchul Chung , Kitae Jang , Pengpeng Xu
{"title":"Is there an emotional dimension to road safety? A spatial analysis for traffic crashes considering streetscape perception and built environment","authors":"Yiping Liu , Tiantian Chen , Hyungchul Chung , Kitae Jang , Pengpeng Xu","doi":"10.1016/j.amar.2025.100374","DOIUrl":null,"url":null,"abstract":"<div><div>Modern streetview image data provide two types of valuable information: the objective built environment and humans’ subjective perception of the streetscape. In the road safety domain, the built environment has been identified as playing a significant role while indicators of human perception are commonly used to evaluate street quality in urban planning. However, studies examining the association between humans’ perceptions of the streetscape and traffic crashes remain limited. This study aims to address this question and to inform safety considerations at the micro level in the planning process for the targeted streets. To answer the question, this study integrates databases on motor vehicle crashes, points of interest, street view images, and road networks for the urban area of Daejeon city in South Korea in 2019. A deep learning model was employed to calculate six perceptual indicators–wealthy, lively, boring, depressing, safety, and beautiful–based on a crowdsourcing dataset. Furthermore, a Bayesian multivariate Poisson-lognormal model with spatial-varying coefficients was introduced to simultaneously account for spatial random effect and the shared unobserved effect across crash severity levels. Results indicate that four of the six perceptual variables significantly affect the number of slight injury crashes, showing spatially heterogeneous effects. Based on the values of human perception indicators and their impacts on traffic crashes, we identified road segments which need special attention to objective safety performance when considering street renovation. Additionally, built environment factors such as the proportion of vegetation, the presence of sidewalks and fences, and points of interest (including educational, health service, and commercial establishments) were found to reduce the number of motor vehicle crashes. Overall, the findings are expected to facilitate the safety-enhanced street planning project, and contribute to the development of human-centric cities.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"46 ","pages":"Article 100374"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665725000053","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Modern streetview image data provide two types of valuable information: the objective built environment and humans’ subjective perception of the streetscape. In the road safety domain, the built environment has been identified as playing a significant role while indicators of human perception are commonly used to evaluate street quality in urban planning. However, studies examining the association between humans’ perceptions of the streetscape and traffic crashes remain limited. This study aims to address this question and to inform safety considerations at the micro level in the planning process for the targeted streets. To answer the question, this study integrates databases on motor vehicle crashes, points of interest, street view images, and road networks for the urban area of Daejeon city in South Korea in 2019. A deep learning model was employed to calculate six perceptual indicators–wealthy, lively, boring, depressing, safety, and beautiful–based on a crowdsourcing dataset. Furthermore, a Bayesian multivariate Poisson-lognormal model with spatial-varying coefficients was introduced to simultaneously account for spatial random effect and the shared unobserved effect across crash severity levels. Results indicate that four of the six perceptual variables significantly affect the number of slight injury crashes, showing spatially heterogeneous effects. Based on the values of human perception indicators and their impacts on traffic crashes, we identified road segments which need special attention to objective safety performance when considering street renovation. Additionally, built environment factors such as the proportion of vegetation, the presence of sidewalks and fences, and points of interest (including educational, health service, and commercial establishments) were found to reduce the number of motor vehicle crashes. Overall, the findings are expected to facilitate the safety-enhanced street planning project, and contribute to the development of human-centric cities.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.