Preparation and application of enzyme-based hydrogels

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Yahui Wen , Xinghai Wang , Jinxue Zhao , Xuejing Zhai , Wei Xia , Peiyi Li , Keqiang Lai , Lidong Wu
{"title":"Preparation and application of enzyme-based hydrogels","authors":"Yahui Wen ,&nbsp;Xinghai Wang ,&nbsp;Jinxue Zhao ,&nbsp;Xuejing Zhai ,&nbsp;Wei Xia ,&nbsp;Peiyi Li ,&nbsp;Keqiang Lai ,&nbsp;Lidong Wu","doi":"10.1016/j.biosx.2025.100594","DOIUrl":null,"url":null,"abstract":"<div><div>Enzymes are highly efficient catalysts in nature, governing countless reactions in biological systems. Enzyme-based hydrogels are three-dimensional network materials with enzyme activity, created by loading enzymes into hydrogels or using hydrogels to synthesize polymeric materials. Due to their high biocompatibility, enzyme-based hydrogels exhibit broad application potential in various fields. In recent years, researchers have been continuously exploring new preparation methods to improve the physical, chemical, and biological properties of enzyme-based hydrogels. Additionally, the introduction of materials such as graphene, carbon nanotubes, and metal-organic frameworks (MOFs) has further enhanced the biological activity of these hydrogels. This review summarizes recent preparation methods and structural characteristics of enzyme-based hydrogels, with a focus on their applications in biosensors and medical fields, highlighting the vast application prospects of enzyme-based hydrogels.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"23 ","pages":"Article 100594"},"PeriodicalIF":10.6100,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes are highly efficient catalysts in nature, governing countless reactions in biological systems. Enzyme-based hydrogels are three-dimensional network materials with enzyme activity, created by loading enzymes into hydrogels or using hydrogels to synthesize polymeric materials. Due to their high biocompatibility, enzyme-based hydrogels exhibit broad application potential in various fields. In recent years, researchers have been continuously exploring new preparation methods to improve the physical, chemical, and biological properties of enzyme-based hydrogels. Additionally, the introduction of materials such as graphene, carbon nanotubes, and metal-organic frameworks (MOFs) has further enhanced the biological activity of these hydrogels. This review summarizes recent preparation methods and structural characteristics of enzyme-based hydrogels, with a focus on their applications in biosensors and medical fields, highlighting the vast application prospects of enzyme-based hydrogels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信