The role of interface boundary conditions and sampling strategies for Schwarz-based coupling of projection-based reduced order models

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Christopher R. Wentland , Francesco Rizzi , Joshua L. Barnett , Irina K. Tezaur
{"title":"The role of interface boundary conditions and sampling strategies for Schwarz-based coupling of projection-based reduced order models","authors":"Christopher R. Wentland ,&nbsp;Francesco Rizzi ,&nbsp;Joshua L. Barnett ,&nbsp;Irina K. Tezaur","doi":"10.1016/j.cam.2025.116584","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents and evaluates a framework for the coupling of subdomain-local projection-based reduced order models (PROMs) using the Schwarz alternating method following a domain decomposition (DD) of the spatial domain on which a given problem of interest is posed. In this approach, the solution on the full domain is obtained via an iterative process in which a sequence of subdomain-local problems are solved, with information propagating between subdomains through transmission boundary conditions (BCs). We explore several new directions involving the Schwarz alternating method aimed at maximizing the method’s efficiency and flexibility, and demonstrate it on three challenging two-dimensional nonlinear hyperbolic problems: the shallow water equations, Burgers’ equation, and the compressible Euler equations. We demonstrate that, for a cell-centered finite volume discretization and a non-overlapping DD, it is possible to obtain a stable and accurate coupled model utilizing Dirichlet–Dirichlet (rather than Robin–Robin or alternating Dirichlet–Neumann) transmission BCs on the subdomain boundaries. We additionally explore the impact of boundary sampling when utilizing the Schwarz alternating method to couple subdomain-local hyper-reduced PROMs. Our numerical results suggest that the proposed methodology has the potential to improve PROM accuracy by enabling the spatial localization of these models via domain decomposition, and achieve up to two orders of magnitude speedup over equivalent coupled full order model solutions and moderate speedups over analogous monolithic solutions.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116584"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000998","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents and evaluates a framework for the coupling of subdomain-local projection-based reduced order models (PROMs) using the Schwarz alternating method following a domain decomposition (DD) of the spatial domain on which a given problem of interest is posed. In this approach, the solution on the full domain is obtained via an iterative process in which a sequence of subdomain-local problems are solved, with information propagating between subdomains through transmission boundary conditions (BCs). We explore several new directions involving the Schwarz alternating method aimed at maximizing the method’s efficiency and flexibility, and demonstrate it on three challenging two-dimensional nonlinear hyperbolic problems: the shallow water equations, Burgers’ equation, and the compressible Euler equations. We demonstrate that, for a cell-centered finite volume discretization and a non-overlapping DD, it is possible to obtain a stable and accurate coupled model utilizing Dirichlet–Dirichlet (rather than Robin–Robin or alternating Dirichlet–Neumann) transmission BCs on the subdomain boundaries. We additionally explore the impact of boundary sampling when utilizing the Schwarz alternating method to couple subdomain-local hyper-reduced PROMs. Our numerical results suggest that the proposed methodology has the potential to improve PROM accuracy by enabling the spatial localization of these models via domain decomposition, and achieve up to two orders of magnitude speedup over equivalent coupled full order model solutions and moderate speedups over analogous monolithic solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信