Influence of roughness and slip velocity on the evolution of frictional strength

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Quan Gan , Xinyuan Zhang , Qiang Li , Jianye Chen , Fengshou Zhang , Zhen Zhong , Yunzhong Jia , Pengliang Yu , Mengke An , Derek Elsworth
{"title":"Influence of roughness and slip velocity on the evolution of frictional strength","authors":"Quan Gan ,&nbsp;Xinyuan Zhang ,&nbsp;Qiang Li ,&nbsp;Jianye Chen ,&nbsp;Fengshou Zhang ,&nbsp;Zhen Zhong ,&nbsp;Yunzhong Jia ,&nbsp;Pengliang Yu ,&nbsp;Mengke An ,&nbsp;Derek Elsworth","doi":"10.1016/j.ijrmms.2025.106076","DOIUrl":null,"url":null,"abstract":"<div><div>Surface roughness and slip velocity play a critical role in determining the strength of crustal faults and their potential seismic response. We examine these controls through slide-hold-slide (SHS) experiments on bare sandstone fractures of variable roughnesses and slip velocities. These experiments explore the effects of frictional healing and frictional relaxation quantified through rate-and state-dependent friction law (RSF). Frictional healing rates (<em>β</em>) range between 0.0020 and 0.0074 and frictional relaxation rates (<em>β</em><sub>c</sub>) between 0.0058 and 0.0097. Increases in surface roughness and shear velocity each accelerate healing and relaxation, whereas elevated normal stresses promote accelerated healing but suppress relaxation. Fracture contact area is closely correlated with changes in frictional healing rate with the evolution of protrusion playing a key role in this frictional response. The number of time-binned AE ring-down counts increase with increasing strength as observed during reactivation – and therefore serve as a reliable indicator of increased strength gain. The logarithmic relationship between hold-time and evolution in the contact area is confirmed by correlations with seismic moment independently measured from the absolutely calibrated AE data. This correlates with an observed increased RSF-<em>b</em> evocative of elevated frictional recovery during hold that translates to a more rapid and intense energy release.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"188 ","pages":"Article 106076"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136516092500053X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Surface roughness and slip velocity play a critical role in determining the strength of crustal faults and their potential seismic response. We examine these controls through slide-hold-slide (SHS) experiments on bare sandstone fractures of variable roughnesses and slip velocities. These experiments explore the effects of frictional healing and frictional relaxation quantified through rate-and state-dependent friction law (RSF). Frictional healing rates (β) range between 0.0020 and 0.0074 and frictional relaxation rates (βc) between 0.0058 and 0.0097. Increases in surface roughness and shear velocity each accelerate healing and relaxation, whereas elevated normal stresses promote accelerated healing but suppress relaxation. Fracture contact area is closely correlated with changes in frictional healing rate with the evolution of protrusion playing a key role in this frictional response. The number of time-binned AE ring-down counts increase with increasing strength as observed during reactivation – and therefore serve as a reliable indicator of increased strength gain. The logarithmic relationship between hold-time and evolution in the contact area is confirmed by correlations with seismic moment independently measured from the absolutely calibrated AE data. This correlates with an observed increased RSF-b evocative of elevated frictional recovery during hold that translates to a more rapid and intense energy release.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信