Comparative study of dissolved copper speciation using DGT and CLE-AdSV in a contaminated urban river estuary and marina

IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Billie G.B. Benedict , Rebecca Zitoun , Keith A. Hunter , Sylvia G. Sander
{"title":"Comparative study of dissolved copper speciation using DGT and CLE-AdSV in a contaminated urban river estuary and marina","authors":"Billie G.B. Benedict ,&nbsp;Rebecca Zitoun ,&nbsp;Keith A. Hunter ,&nbsp;Sylvia G. Sander","doi":"10.1016/j.marchem.2025.104500","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive study was conducted in a river estuary and marina in Auckland, New Zealand, to examine the <em>in-situ</em> speciation of copper (Cu) complexes across freshwater, estuarine, and marine environments using the diffusive gradient in thin films (DGT) technique. The study employed both open-pore (OP) and restrictive-pore (RP) diffusive gels of varying thicknesses to assess the effectiveness of DGT hydrogels and the role of the apparent diffusive boundary layer (ADBL) in determining the lability of Cu complexes in natural waters. The DGT findings were compared with results from competing ligand exchange–adsorptive stripping voltammetry (CLE-AdSV) and a speciation prediction model (WHAM/Model-VII). The study highlighted the critical importance of accounting for the ADBL, as its exclusion led to an average underestimation of Cu-complex lability by approximately 50 %. Given the minimal difference in outcomes between DGT-OP and DGT-RP, the use of standard DGT-OP is recommended. Further analysis revealed a strong correlation between DGT-labile Cu (CuDGT-lab), the weaker Cu-L<sub>2</sub> complexes detected by CLE-AdSV, and the inorganic Cu species predicted by WHAM/Model-VII, the latter two based on discrete samples. A strong relationship was also noted between Cu<sub>DGT-lab</sub> and the inorganic Cu measured by CLE-AdSV. The study provided compelling evidence that the <em>in-situ</em> ligand pool consists of a mixture of terrestrial humic substances and marine-derived organic ligands. These marine ligands form highly stable Cu-L<sub>1</sub> complexes along the salinity gradient, which were mostly DGT-inert. The DGT results indicated that the lability of <em>in-situ</em> Cu complexes decreased with increasing salinity, with over 60 % of Cu in freshwater being DGT-labile. Overall, the study demonstrates that the DGT technique is a robust and straightforward method for environmental monitoring and risk assessment across diverse physico-chemical water conditions.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"270 ","pages":"Article 104500"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420325000155","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive study was conducted in a river estuary and marina in Auckland, New Zealand, to examine the in-situ speciation of copper (Cu) complexes across freshwater, estuarine, and marine environments using the diffusive gradient in thin films (DGT) technique. The study employed both open-pore (OP) and restrictive-pore (RP) diffusive gels of varying thicknesses to assess the effectiveness of DGT hydrogels and the role of the apparent diffusive boundary layer (ADBL) in determining the lability of Cu complexes in natural waters. The DGT findings were compared with results from competing ligand exchange–adsorptive stripping voltammetry (CLE-AdSV) and a speciation prediction model (WHAM/Model-VII). The study highlighted the critical importance of accounting for the ADBL, as its exclusion led to an average underestimation of Cu-complex lability by approximately 50 %. Given the minimal difference in outcomes between DGT-OP and DGT-RP, the use of standard DGT-OP is recommended. Further analysis revealed a strong correlation between DGT-labile Cu (CuDGT-lab), the weaker Cu-L2 complexes detected by CLE-AdSV, and the inorganic Cu species predicted by WHAM/Model-VII, the latter two based on discrete samples. A strong relationship was also noted between CuDGT-lab and the inorganic Cu measured by CLE-AdSV. The study provided compelling evidence that the in-situ ligand pool consists of a mixture of terrestrial humic substances and marine-derived organic ligands. These marine ligands form highly stable Cu-L1 complexes along the salinity gradient, which were mostly DGT-inert. The DGT results indicated that the lability of in-situ Cu complexes decreased with increasing salinity, with over 60 % of Cu in freshwater being DGT-labile. Overall, the study demonstrates that the DGT technique is a robust and straightforward method for environmental monitoring and risk assessment across diverse physico-chemical water conditions.

Abstract Image

DGT法和cl - adsv法在污染城市河口和码头中溶解铜形态的比较研究
在新西兰奥克兰的河口和码头进行了一项综合研究,利用薄膜扩散梯度(DGT)技术检查淡水、河口和海洋环境中铜(Cu)配合物的原位形态。该研究采用不同厚度的开孔(OP)和限制孔(RP)扩散凝胶来评估DGT水凝胶的有效性,以及表观扩散边界层(ADBL)在确定天然水体中Cu配合物稳定性中的作用。DGT结果比较了竞争配体交换吸附溶出伏安法(cl - adsv)和物种形成预测模型(WHAM/ model - vii)的结果。该研究强调了考虑ADBL的重要性,因为它的排除导致对cu复合物稳定性的平均低估约50%。鉴于DGT-OP和DGT-RP之间的结果差异很小,建议使用标准DGT-OP。进一步分析表明,dgt -不稳定Cu (CuDGT-lab)、CLE-AdSV检测到的较弱Cu- l2配合物和WHAM/Model-VII预测的无机Cu物种之间存在很强的相关性,后两者基于离散样本。CuDGT-lab与CLE-AdSV测量的无机Cu之间也存在很强的关系。该研究提供了令人信服的证据,表明原位配体池由陆地腐殖质物质和海洋来源的有机配体组成。这些海洋配体沿盐度梯度形成高度稳定的Cu-L1配合物,这些配合物大多是dgt惰性的。DGT结果表明,原位Cu配合物的稳定性随着盐度的增加而降低,淡水中超过60%的Cu是DGT不稳定的。总体而言,该研究表明,DGT技术是一种强大而直接的方法,可用于各种物理化学水条件下的环境监测和风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Chemistry
Marine Chemistry 化学-海洋学
CiteScore
6.00
自引率
3.30%
发文量
70
审稿时长
4.5 months
期刊介绍: Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信