Selection of granular damper parameters to achieve optimum vibration attenuation on vibrating structures

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Furkan Terzioglu, Jem Athing Rongong
{"title":"Selection of granular damper parameters to achieve optimum vibration attenuation on vibrating structures","authors":"Furkan Terzioglu,&nbsp;Jem Athing Rongong","doi":"10.1016/j.ymssp.2025.112512","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a compact understanding on the factors that influence the non-linear dissipative performance of granular dampers. The work focuses on the two main motion types within the damper: fluidisation and two-sided collective collision. This is accomplished by conducting experiments on a beam with an attached granular damper and by simulating the beam-damper system with a computationally efficient predictive model. The model is validated by comparing results with those from physical experiments. The results demonstrate that damper parameters affect the two motion types in different ways. Current knowledge of damper performance is explained with this view. Remaining uncertainties are investigated and explained using the experimental and numerical approaches. It is shown that the two types of behaviour can be optimised separately from each other, leading to the understanding that existing damper performance charts can be decomposed for damper-level modelling.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"229 ","pages":"Article 112512"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025002134","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a compact understanding on the factors that influence the non-linear dissipative performance of granular dampers. The work focuses on the two main motion types within the damper: fluidisation and two-sided collective collision. This is accomplished by conducting experiments on a beam with an attached granular damper and by simulating the beam-damper system with a computationally efficient predictive model. The model is validated by comparing results with those from physical experiments. The results demonstrate that damper parameters affect the two motion types in different ways. Current knowledge of damper performance is explained with this view. Remaining uncertainties are investigated and explained using the experimental and numerical approaches. It is shown that the two types of behaviour can be optimised separately from each other, leading to the understanding that existing damper performance charts can be decomposed for damper-level modelling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信