Fangjie Liu, Zhengqi Su, Haizhao Li, Qingjie Wang, Xin Wang, Weiwei Shang, Bin Xu
{"title":"Enhanced oxygen reduction reaction activity of Ca doping CoFe2O4 as cathodes for solid oxide fuel cells","authors":"Fangjie Liu, Zhengqi Su, Haizhao Li, Qingjie Wang, Xin Wang, Weiwei Shang, Bin Xu","doi":"10.1016/j.ssi.2025.116812","DOIUrl":null,"url":null,"abstract":"<div><div>CoFe<sub>2</sub>O<sub>4</sub> (CFO) was identified as one of the potential cathode materials for solid oxide fuel cells (SOFCs). However, optimization was required due to limitations of electrochemical performance. Here effects of Ca doping on CFO were investigated for the oxygen reduction reaction (ORR) properties. Co<sub>1-x</sub>Ca<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (CCxFO, x = 0, 0.2 (CC2FO), 0.4 (CC4FO)) were synthesized with sol-gel method. Oxygen vacancy concentration was increased by Ca doping enhancing the electrochemical performance of CFO. At 750 °C, the polarization resistance (R<sub>p</sub>) of CC4FO was 1.04 Ω·cm<sup>2</sup>, which was 1.09 Ω·cm<sup>2</sup> lower than that of CFO (2.13 Ω·cm<sup>2</sup>). The electronic conductivity value (σ) of CC4FO was 0.614 at 750 °C and the activation energy (E<sub>a</sub>) of CC4FO was 102.81 kJ/mol. The results indicated that improvements in the ORR activity of the CFO spinel material were mainly attributed to an increase in oxygen vacancy concentration and oxygen surface exchange rate due to Ca doping, CC4FO showed promising potential as SOFC cathode.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"422 ","pages":"Article 116812"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000311","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CoFe2O4 (CFO) was identified as one of the potential cathode materials for solid oxide fuel cells (SOFCs). However, optimization was required due to limitations of electrochemical performance. Here effects of Ca doping on CFO were investigated for the oxygen reduction reaction (ORR) properties. Co1-xCaxFe2O4 (CCxFO, x = 0, 0.2 (CC2FO), 0.4 (CC4FO)) were synthesized with sol-gel method. Oxygen vacancy concentration was increased by Ca doping enhancing the electrochemical performance of CFO. At 750 °C, the polarization resistance (Rp) of CC4FO was 1.04 Ω·cm2, which was 1.09 Ω·cm2 lower than that of CFO (2.13 Ω·cm2). The electronic conductivity value (σ) of CC4FO was 0.614 at 750 °C and the activation energy (Ea) of CC4FO was 102.81 kJ/mol. The results indicated that improvements in the ORR activity of the CFO spinel material were mainly attributed to an increase in oxygen vacancy concentration and oxygen surface exchange rate due to Ca doping, CC4FO showed promising potential as SOFC cathode.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.