Key Role of Binders to Anchor Nanoparticle-Based Supraparticles on Spherical Substrates with Preserved Functionality

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thomas Zimmermann, Christopher Fischer, Maximilian Oppmann, Sarah Wenderoth, Bettina Winzer, Ferdinand Somorowsky, Nicolas Vogel, Karl Mandel and Susanne Wintzheimer*, 
{"title":"Key Role of Binders to Anchor Nanoparticle-Based Supraparticles on Spherical Substrates with Preserved Functionality","authors":"Thomas Zimmermann,&nbsp;Christopher Fischer,&nbsp;Maximilian Oppmann,&nbsp;Sarah Wenderoth,&nbsp;Bettina Winzer,&nbsp;Ferdinand Somorowsky,&nbsp;Nicolas Vogel,&nbsp;Karl Mandel and Susanne Wintzheimer*,&nbsp;","doi":"10.1021/acsanm.4c0705110.1021/acsanm.4c07051","DOIUrl":null,"url":null,"abstract":"<p >Supraparticles, particles composed of individual nanoparticles, have attractive properties, but their applicability in real-world applications is often restricted by their comparably small dimensions. Suprabeads, in which individual supraparticles are fixed to a larger support bead with the help of a binder, have been proposed to address this challenge. These suprabeads retain the the unique functionalities of both the nanoparticles and supraparticles while offering millimeter-sized dimensions for facilitated handling. Here, we investigate the role of the binder in the formation and functionalization of suprabeads. First, we focus on the thermal, mechanical, and chemical stabilities of suprabeads as a function of their binder composition. Our results show that binders containing organic groups offer room-temperature curability, while the chemical and thermal stability of the resulting suprabeads is limited and their mechanical stability depends on the flexibility of the binder. Inorganic binders drastically increase the temperature stability but are inherently more brittle. Second, we demonstrate that wetting the supraparticle with the binder layer enables us to tailor the resultant suprabead functionality. While a low degree of embedding provides accessible supraparticles, a larger degree of embedding induces tunable protection of the supraparticles from the environment. To highlight the versatility of the suprabead concept, we demonstrate that the ideal binder material can be identified for a specific application, such as ammonia indication or propane dehydrogenation.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 8","pages":"4087–4099 4087–4099"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c07051","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supraparticles, particles composed of individual nanoparticles, have attractive properties, but their applicability in real-world applications is often restricted by their comparably small dimensions. Suprabeads, in which individual supraparticles are fixed to a larger support bead with the help of a binder, have been proposed to address this challenge. These suprabeads retain the the unique functionalities of both the nanoparticles and supraparticles while offering millimeter-sized dimensions for facilitated handling. Here, we investigate the role of the binder in the formation and functionalization of suprabeads. First, we focus on the thermal, mechanical, and chemical stabilities of suprabeads as a function of their binder composition. Our results show that binders containing organic groups offer room-temperature curability, while the chemical and thermal stability of the resulting suprabeads is limited and their mechanical stability depends on the flexibility of the binder. Inorganic binders drastically increase the temperature stability but are inherently more brittle. Second, we demonstrate that wetting the supraparticle with the binder layer enables us to tailor the resultant suprabead functionality. While a low degree of embedding provides accessible supraparticles, a larger degree of embedding induces tunable protection of the supraparticles from the environment. To highlight the versatility of the suprabead concept, we demonstrate that the ideal binder material can be identified for a specific application, such as ammonia indication or propane dehydrogenation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信