Nils le Coutre, Tolibjon Abdurakhmonov, Paul Weinbrenner, Kenji Watanabe, Takashi Taniguchi, Tobias Korn, Franziska Fennel, Oliver Kühn and Friedemann Reinhard*,
{"title":"Growth of Few-Layer Molecular Crystals of PTCDI on Hexagonal Boron Nitride by Microspacing Air-Gap Sublimation","authors":"Nils le Coutre, Tolibjon Abdurakhmonov, Paul Weinbrenner, Kenji Watanabe, Takashi Taniguchi, Tobias Korn, Franziska Fennel, Oliver Kühn and Friedemann Reinhard*, ","doi":"10.1021/acsaom.4c0052210.1021/acsaom.4c00522","DOIUrl":null,"url":null,"abstract":"<p >Extended two-dimensional (2D) crystals of dye molecules adsorbed on 2D material substrates such as boron nitride have recently become a subject of intense study, with potential applications ranging from quantum technology to optoelectronics. The most established technique for the production of these films is physical vapor transport in a vacuum. We demonstrate that few-layer crystalline films of the organic dye molecule perylenetetracarboxylic diimide (PTCDI) on boron nitride can be produced by microspacing in-air sublimation, a radically simplified technique that does not require complicated vacuum systems. The resulting layers display clearly resolved atomic step terraces in atomic force microscopy and a clear polarization anisotropy in their fluorescence, confirming molecular alignment and long-range order. Using density functional theory and classical molecular dynamics simulations, the canted motif is identified as the most likely building block for the morphology of a PTDCI monolayer on the hBN substrate.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 2","pages":"455–462 455–462"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.4c00522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Extended two-dimensional (2D) crystals of dye molecules adsorbed on 2D material substrates such as boron nitride have recently become a subject of intense study, with potential applications ranging from quantum technology to optoelectronics. The most established technique for the production of these films is physical vapor transport in a vacuum. We demonstrate that few-layer crystalline films of the organic dye molecule perylenetetracarboxylic diimide (PTCDI) on boron nitride can be produced by microspacing in-air sublimation, a radically simplified technique that does not require complicated vacuum systems. The resulting layers display clearly resolved atomic step terraces in atomic force microscopy and a clear polarization anisotropy in their fluorescence, confirming molecular alignment and long-range order. Using density functional theory and classical molecular dynamics simulations, the canted motif is identified as the most likely building block for the morphology of a PTDCI monolayer on the hBN substrate.
期刊介绍:
ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.