Biomimetic Nanoparticles for Targeted Lung Cancer Immunotherapy via Specific Clearance of High Potassium

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiaqi You, Jie Shen, Wenwen Liu, Juan Zhou, Yimin Yu, Chengyu Liu, Feng Wang*, Ang Li* and Jianou Qiao*, 
{"title":"Biomimetic Nanoparticles for Targeted Lung Cancer Immunotherapy via Specific Clearance of High Potassium","authors":"Jiaqi You,&nbsp;Jie Shen,&nbsp;Wenwen Liu,&nbsp;Juan Zhou,&nbsp;Yimin Yu,&nbsp;Chengyu Liu,&nbsp;Feng Wang*,&nbsp;Ang Li* and Jianou Qiao*,&nbsp;","doi":"10.1021/acsanm.4c0624010.1021/acsanm.4c06240","DOIUrl":null,"url":null,"abstract":"<p >Lung cancer is one of the most common cancers and is the leading cause of cancer death. Recent studies have shown that high potassium ion concentrations in the lung cancer tumor microenvironment (TME) can inhibit antitumor immunity through the induction of tumor-associated macrophages (TAMs) into the M2-like phenotype. Given that crown ethers can specifically bind to potassium ions, we constructed a biomimetic pH-sensitive nanoparticle system that uses a liposome encapsulating crown ether as a core drug and the lung cancer cell membrane was employed as the outer coating (CCM-LP@crown-ether). CCM-LP@crown-ether could remove potassium ions and skew M2 macrophages toward the M1-like phenotype in a pH-dependent manner, which enhanced the ability of macrophages to phagocytose and induce tumor cell apoptosis in vitro. Intravenous injection of CCM-LP@crown-ether targeted and cleared specific potassium ions in the tumor and showed good biosafety. Importantly, CCM-LP@crown-ether increased the M1/M2 ratio, reduced MDSC infiltration, and promoted the function and quantification of CD8+ T cells in the tumor microenvironment after intravenous administration, which restored antitumor immunity and effectively inhibited tumor growth in vivo. Furthermore, CCM-LP@crown-ether achieved an enhanced antitumor effect in vivo when combined with an anti-PD-1 antibody (α-PD-1) and prolonged the survival time of tumor-bearing mice. Overall, CCM-LP@crown-ether demonstrated the potential for clinical applications in lung cancer immunotherapy.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 8","pages":"3787–3803 3787–3803"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsanm.4c06240","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06240","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is one of the most common cancers and is the leading cause of cancer death. Recent studies have shown that high potassium ion concentrations in the lung cancer tumor microenvironment (TME) can inhibit antitumor immunity through the induction of tumor-associated macrophages (TAMs) into the M2-like phenotype. Given that crown ethers can specifically bind to potassium ions, we constructed a biomimetic pH-sensitive nanoparticle system that uses a liposome encapsulating crown ether as a core drug and the lung cancer cell membrane was employed as the outer coating (CCM-LP@crown-ether). CCM-LP@crown-ether could remove potassium ions and skew M2 macrophages toward the M1-like phenotype in a pH-dependent manner, which enhanced the ability of macrophages to phagocytose and induce tumor cell apoptosis in vitro. Intravenous injection of CCM-LP@crown-ether targeted and cleared specific potassium ions in the tumor and showed good biosafety. Importantly, CCM-LP@crown-ether increased the M1/M2 ratio, reduced MDSC infiltration, and promoted the function and quantification of CD8+ T cells in the tumor microenvironment after intravenous administration, which restored antitumor immunity and effectively inhibited tumor growth in vivo. Furthermore, CCM-LP@crown-ether achieved an enhanced antitumor effect in vivo when combined with an anti-PD-1 antibody (α-PD-1) and prolonged the survival time of tumor-bearing mice. Overall, CCM-LP@crown-ether demonstrated the potential for clinical applications in lung cancer immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信