Polysilazane-Cross-Linked Acrylic Coatings for Wood: A Versatile Solution for Weather Resistance, Stain Repellence, and Fire Safety

Amrita Chatterjee, Sushmit Sen, Shakshi Bhardwaj and Pradip K. Maji*, 
{"title":"Polysilazane-Cross-Linked Acrylic Coatings for Wood: A Versatile Solution for Weather Resistance, Stain Repellence, and Fire Safety","authors":"Amrita Chatterjee,&nbsp;Sushmit Sen,&nbsp;Shakshi Bhardwaj and Pradip K. Maji*,&nbsp;","doi":"10.1021/acsaenm.4c0080310.1021/acsaenm.4c00803","DOIUrl":null,"url":null,"abstract":"<p >Acrylic-based wood coatings are widely recognized for their durability, UV resistance, flexibility, and rapid drying times, typically achieved by using isocyanate-based curing systems despite their inherent toxicity. Herein, a novel approach is presented that utilizes polysilazane (PSZ) as an alternative cross-linker to develop advanced acrylic coatings for wood applications. The incorporation of PSZ introduces significant improvements in structural and functional performance, including enhanced hydrophobicity, excellent weather resistance, and self-cleaning properties. Silica (SiO<sub>2</sub>) nanoparticles are integrated into the system to synergistically boost flame retardancy, achieving a V0 rating, while further augmenting the surface’s low-energy characteristics. The resulting coatings exhibit a high-gloss, ultrasmooth finish with outstanding environmental barrier properties, effectively resisting stains, water, and harsh weather conditions. The PSZ-modified silica network fosters the formation of a low-energy surface, facilitating ease of cleaning and long-term antistaining performance. Furthermore, the coatings demonstrate exceptional thermal stability and flame resistance, validated through rigorous experimental evaluations. This innovative use of PSZ as a cross-linker not only offers an alternative to traditional isocyanate curing agents but also enhances the overall structural and functional capabilities of wood coatings. These advancements establish a high-performance solution with strong potential for commercialization in demanding wood protection applications.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"3 2","pages":"502–512 502–512"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaenm.4c00803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acrylic-based wood coatings are widely recognized for their durability, UV resistance, flexibility, and rapid drying times, typically achieved by using isocyanate-based curing systems despite their inherent toxicity. Herein, a novel approach is presented that utilizes polysilazane (PSZ) as an alternative cross-linker to develop advanced acrylic coatings for wood applications. The incorporation of PSZ introduces significant improvements in structural and functional performance, including enhanced hydrophobicity, excellent weather resistance, and self-cleaning properties. Silica (SiO2) nanoparticles are integrated into the system to synergistically boost flame retardancy, achieving a V0 rating, while further augmenting the surface’s low-energy characteristics. The resulting coatings exhibit a high-gloss, ultrasmooth finish with outstanding environmental barrier properties, effectively resisting stains, water, and harsh weather conditions. The PSZ-modified silica network fosters the formation of a low-energy surface, facilitating ease of cleaning and long-term antistaining performance. Furthermore, the coatings demonstrate exceptional thermal stability and flame resistance, validated through rigorous experimental evaluations. This innovative use of PSZ as a cross-linker not only offers an alternative to traditional isocyanate curing agents but also enhances the overall structural and functional capabilities of wood coatings. These advancements establish a high-performance solution with strong potential for commercialization in demanding wood protection applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信