{"title":"Intensified exposure to compound extreme heat and ozone pollution in summer across Chinese cities","authors":"Jingling Su, Limin Jiao, Gang Xu","doi":"10.1038/s41612-025-00966-5","DOIUrl":null,"url":null,"abstract":"<p>Climate change and air pollution are interconnected global crises, with concurrent heatwaves and extreme ozone levels threatening public health. This study investigates urban population exposure to concurrent extreme heat and ozone pollution across Chinese cities from 2003 to 2020, using high-resolution (1 km) daily temperature and ozone data. We quantify annual exposure rates at national and city levels, distinguishing contributions from urban population growth and compound event frequency. Findings show a 67% increase in compound exposure over 18 years, with 38% of cities, particularly in the North China Plain, exhibiting significant upward trends. Population growth mainly drives exposure in southern cities, while rising event frequency has a greater impact in northern regions. Core urban areas have become critical hotspots, with some major cities’ centers contributing over 80% to total exposure in 2020. The results highlight the urgent need for targeted climate adaptation strategies to mitigate health risks in urban environments.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"27 3 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00966-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change and air pollution are interconnected global crises, with concurrent heatwaves and extreme ozone levels threatening public health. This study investigates urban population exposure to concurrent extreme heat and ozone pollution across Chinese cities from 2003 to 2020, using high-resolution (1 km) daily temperature and ozone data. We quantify annual exposure rates at national and city levels, distinguishing contributions from urban population growth and compound event frequency. Findings show a 67% increase in compound exposure over 18 years, with 38% of cities, particularly in the North China Plain, exhibiting significant upward trends. Population growth mainly drives exposure in southern cities, while rising event frequency has a greater impact in northern regions. Core urban areas have become critical hotspots, with some major cities’ centers contributing over 80% to total exposure in 2020. The results highlight the urgent need for targeted climate adaptation strategies to mitigate health risks in urban environments.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.