Separation of phycocyanin from Arthrospira platensis (spirulina) by application of ceramic microfiltration membranes

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Mahsa Orang, Ebrahim Ghanbarian, Mohsen Abbasi, Mehdi Mohammadi, Mohammad Akrami
{"title":"Separation of phycocyanin from Arthrospira platensis (spirulina) by application of ceramic microfiltration membranes","authors":"Mahsa Orang,&nbsp;Ebrahim Ghanbarian,&nbsp;Mohsen Abbasi,&nbsp;Mehdi Mohammadi,&nbsp;Mohammad Akrami","doi":"10.1007/s13201-025-02382-9","DOIUrl":null,"url":null,"abstract":"<div><p>Phycocyanin is a phycobiliprotein that has various pharmacological properties. The nature of phycocyanin is blue, non-toxic, odorless, and slightly sweet when dissolved in water. Considering the importance and uses of phycocyanin, including oral, medicinal, and cosmetic, the aim of this research is finding a new way to extract optimal phycocyanin. In this regard, four new and economical microfiltration membranes: kaolin–zeolite (K–Z), kaolin–zeolite–fly ash (K–Z–F), kaolin–alumina (K–A), and kaolin–alumina–fly ash (K–A–F), were made by extrusion method. Some physical characteristics of the fabricated membranes were investigated. The highest porosity related to K–A–F, and the average size of the pores in the membranes was between 0.8 and 1.537 μm. SEM analysis was also performed to prove the uniformity of the membrane structure. After the cell breaking of <i>Arthrospira platensis</i> (spirulina) in water through freeze-thawing and centrifugation, the solution is purified by microfiltration. Finally, the performance of the membranes was compared with each other. K–A–F membrane had the best performance in phycocyanin purification (purity 0.91).</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02382-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02382-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phycocyanin is a phycobiliprotein that has various pharmacological properties. The nature of phycocyanin is blue, non-toxic, odorless, and slightly sweet when dissolved in water. Considering the importance and uses of phycocyanin, including oral, medicinal, and cosmetic, the aim of this research is finding a new way to extract optimal phycocyanin. In this regard, four new and economical microfiltration membranes: kaolin–zeolite (K–Z), kaolin–zeolite–fly ash (K–Z–F), kaolin–alumina (K–A), and kaolin–alumina–fly ash (K–A–F), were made by extrusion method. Some physical characteristics of the fabricated membranes were investigated. The highest porosity related to K–A–F, and the average size of the pores in the membranes was between 0.8 and 1.537 μm. SEM analysis was also performed to prove the uniformity of the membrane structure. After the cell breaking of Arthrospira platensis (spirulina) in water through freeze-thawing and centrifugation, the solution is purified by microfiltration. Finally, the performance of the membranes was compared with each other. K–A–F membrane had the best performance in phycocyanin purification (purity 0.91).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信