Florigen-producing cells express FPF1-LIKE PROTEIN 1 to accelerate flowering and stem growth in Arabidopsis

IF 10.7 1区 生物学 Q1 CELL BIOLOGY
Hiroshi Takagi, Nayoung Lee, Andrew K. Hempton, Savita Purushwani, Michitaka Notaguchi, Kota Yamauchi, Kazumasa Shirai, Yaichi Kawakatsu, Susumu Uehara, William G. Albers, Benjamin L.R. Downing, Shogo Ito, Takamasa Suzuki, Takakazu Matsuura, Izumi C. Mori, Nobutaka Mitsuda, Daisuke Kurihara, Tomonao Matsushita, Young Hun Song, Yoshikatsu Sato, Takato Imaizumi
{"title":"Florigen-producing cells express FPF1-LIKE PROTEIN 1 to accelerate flowering and stem growth in Arabidopsis","authors":"Hiroshi Takagi, Nayoung Lee, Andrew K. Hempton, Savita Purushwani, Michitaka Notaguchi, Kota Yamauchi, Kazumasa Shirai, Yaichi Kawakatsu, Susumu Uehara, William G. Albers, Benjamin L.R. Downing, Shogo Ito, Takamasa Suzuki, Takakazu Matsuura, Izumi C. Mori, Nobutaka Mitsuda, Daisuke Kurihara, Tomonao Matsushita, Young Hun Song, Yoshikatsu Sato, Takato Imaizumi","doi":"10.1016/j.devcel.2025.02.003","DOIUrl":null,"url":null,"abstract":"Plants induce the expression of the florigen FLOWERING LOCUS T (FT) in response to seasonal changes. <em>FT</em> is expressed in a distinct subset of phloem companion cells in <em>Arabidopsis</em>. Using tissue-specific translatome analysis, we discovered that the <em>FT</em>-expressing cells also express <em>FLOWERING PROMOTING FACTOR 1</em> (<em>FPF1</em>)<em>-LIKE PROTEIN 1</em> (<em>FLP1</em>), specifically under long-day conditions with the red/far-red ratio of natural sunlight. The master regulator of <em>FT</em>, CONSTANS (CO), is essential for <em>FLP1</em> expression, suggesting that <em>FLP1</em> is involved in the photoperiod pathway. We show that <em>FLP1</em> promotes early flowering independently of <em>FT</em>, is active in the shoot apical meristem, and induces the expression of <em>SEPALLATA</em><em>3</em> (<em>SEP3</em>), a key E-class homeotic gene. Unlike <em>FT</em>, <em>FLP1</em> also facilitates inflorescence stem elongation. Our cumulative evidence suggests that the small FLP1 protein acts as a mobile signal like FT. Taken together, FLP1 accelerates flowering in parallel with FT and orchestrates flowering and stem elongation during the reproductive transition.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"82 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.02.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants induce the expression of the florigen FLOWERING LOCUS T (FT) in response to seasonal changes. FT is expressed in a distinct subset of phloem companion cells in Arabidopsis. Using tissue-specific translatome analysis, we discovered that the FT-expressing cells also express FLOWERING PROMOTING FACTOR 1 (FPF1)-LIKE PROTEIN 1 (FLP1), specifically under long-day conditions with the red/far-red ratio of natural sunlight. The master regulator of FT, CONSTANS (CO), is essential for FLP1 expression, suggesting that FLP1 is involved in the photoperiod pathway. We show that FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 also facilitates inflorescence stem elongation. Our cumulative evidence suggests that the small FLP1 protein acts as a mobile signal like FT. Taken together, FLP1 accelerates flowering in parallel with FT and orchestrates flowering and stem elongation during the reproductive transition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信