Achieving kilowatt-scale elastocaloric cooling by a multi-cell architecture

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-02-26 DOI:10.1038/s41586-024-08549-9
Guoan Zhou, Lingyun Zhang, Zexi Li, Peng Hua, Qingping Sun, Shuhuai Yao
{"title":"Achieving kilowatt-scale elastocaloric cooling by a multi-cell architecture","authors":"Guoan Zhou, Lingyun Zhang, Zexi Li, Peng Hua, Qingping Sun, Shuhuai Yao","doi":"10.1038/s41586-024-08549-9","DOIUrl":null,"url":null,"abstract":"<p>Elastocaloric cooling using shape memory alloys (SMAs) has attracted considerable interest as an environmentally friendly, energy-efficient alternative to conventional vapour-compression refrigeration<sup>1,2</sup>. However, the limited cooling power of existing devices (≤300 W) hampers the commercialization of this technology<sup>3,4</sup>. Here we constructed a kilowatt-scale elastocaloric cooling device using compressive tubular NiTi in an ‘SMAs in series–fluid in parallel’ architecture, referred to as the multi-cell architecture. A large specific cooling power of 12.3 W g<sup>−1</sup> was achieved by the large surface-area-to-volume ratio of thin-walled tubular NiTi at high-frequency operation (3.5 Hz), complemented by graphene nanofluid as an efficient heat transfer agent. Furthermore, the multi-cell architecture ensures a sufficient elastocaloric mass for tight assembly while maintaining a low system fluid pressure. Our device achieves a cooling power of 1,284 W on the fluid side at zero temperature lift during the initial 500,000 cycles, demonstrating the potential of this green cooling technology for a decarbonized future<sup>5,6</sup>.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"1 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08549-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Elastocaloric cooling using shape memory alloys (SMAs) has attracted considerable interest as an environmentally friendly, energy-efficient alternative to conventional vapour-compression refrigeration1,2. However, the limited cooling power of existing devices (≤300 W) hampers the commercialization of this technology3,4. Here we constructed a kilowatt-scale elastocaloric cooling device using compressive tubular NiTi in an ‘SMAs in series–fluid in parallel’ architecture, referred to as the multi-cell architecture. A large specific cooling power of 12.3 W g−1 was achieved by the large surface-area-to-volume ratio of thin-walled tubular NiTi at high-frequency operation (3.5 Hz), complemented by graphene nanofluid as an efficient heat transfer agent. Furthermore, the multi-cell architecture ensures a sufficient elastocaloric mass for tight assembly while maintaining a low system fluid pressure. Our device achieves a cooling power of 1,284 W on the fluid side at zero temperature lift during the initial 500,000 cycles, demonstrating the potential of this green cooling technology for a decarbonized future5,6.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信