Investigating the stability of RNA-lipid nanoparticles in biological fluids: Unveiling its crucial role for understanding LNP performance

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Heyang Zhang , Matthias Barz
{"title":"Investigating the stability of RNA-lipid nanoparticles in biological fluids: Unveiling its crucial role for understanding LNP performance","authors":"Heyang Zhang ,&nbsp;Matthias Barz","doi":"10.1016/j.jconrel.2025.02.055","DOIUrl":null,"url":null,"abstract":"<div><div>Lipid nanoparticles (LNPs) are the most established and clinically advanced platform for RNA delivery. While significant efforts have been made to improve RNA delivery efficiency for improved protein production, the interplay between physiological stability, target specificity, and therapeutic efficacy of RNA-LNPs remains largely unexplored. This review highlights the crucial, yet often overlooked, impact of in vivo stability or instability of RNA-LNPs in contact with biological fluids on delivery performance. We discuss the various factors, including lipid composition, particle surface properties and interactions with proteins in physiological conditions, and provide an overview of the current methods for assessing RNA-LNP stability in biological fluids, such as dynamic laser light scattering, liquid chromatography, and fluorescent and radiolabeled techniques. In the final part, we propose strategies for enhancing stability, with a focus on shielding lipids. Therefore, this work highlights the importance of investigating and understanding the balance between stability and instability of LNPs in the biological context to achieve a more meaningful correlation between formulation properties and in vivo performance.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"381 ","pages":"Article 113559"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925001683","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid nanoparticles (LNPs) are the most established and clinically advanced platform for RNA delivery. While significant efforts have been made to improve RNA delivery efficiency for improved protein production, the interplay between physiological stability, target specificity, and therapeutic efficacy of RNA-LNPs remains largely unexplored. This review highlights the crucial, yet often overlooked, impact of in vivo stability or instability of RNA-LNPs in contact with biological fluids on delivery performance. We discuss the various factors, including lipid composition, particle surface properties and interactions with proteins in physiological conditions, and provide an overview of the current methods for assessing RNA-LNP stability in biological fluids, such as dynamic laser light scattering, liquid chromatography, and fluorescent and radiolabeled techniques. In the final part, we propose strategies for enhancing stability, with a focus on shielding lipids. Therefore, this work highlights the importance of investigating and understanding the balance between stability and instability of LNPs in the biological context to achieve a more meaningful correlation between formulation properties and in vivo performance.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信