Optical sorting: past, present and future

IF 20.6 Q1 OPTICS
Meng Yang, Yuzhi Shi, Qinghua Song, Zeyong Wei, Xiong Dun, Zhiming Wang, Zhanshan Wang, Cheng-Wei Qiu, Hui Zhang, Xinbin Cheng
{"title":"Optical sorting: past, present and future","authors":"Meng Yang, Yuzhi Shi, Qinghua Song, Zeyong Wei, Xiong Dun, Zhiming Wang, Zhanshan Wang, Cheng-Wei Qiu, Hui Zhang, Xinbin Cheng","doi":"10.1038/s41377-024-01734-5","DOIUrl":null,"url":null,"abstract":"<p>Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as <i>passive</i> and <i>active</i> sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"49 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01734-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.

Abstract Image

光学分类:过去、现在和未来
光学分选将光学镊子与光谱、人工智能(AI)和免疫分析等多种技术相结合,赋予了前所未有的颗粒分选能力。与微流体、声学和电泳等其他方法相比,光学分选在纳米级精度、高分辨率和非侵入性方面具有明显的优势,在生物物理学、化学和材料科学领域越来越不可或缺。本文综述了各种光学分选技术的历史、发展和前景,并将其分为被动分选和主动分选。首先,我们阐明了常规光力和奇异光力的基本物理和属性。然后,我们探索了主动光学分选的分选能力,它融合了光镊子与多种技术,包括拉曼光谱和机器学习。随后,我们揭示了基于粒子的不同大小和形状、分选分辨率和速度,配置有透镜系统或超表面的确定性光场在粒子被动分选中所起的重要作用。最后,我们展望了最有前途和未来的方向,包括人工智能促进的超快速和生物形态选择性分选。可以预见,光学分选将不可避免地成为科学研究和实际生物医学应用的革命性工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信