Covalent functionalization of transition metal dichalcogenides with perylene for light harvesting devices†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-02-27 DOI:10.1039/D4NR05364H
Ruben Canton-Vitoria, Yuki Matsunaga, Shaochun Zhang, Mengsong Xue, Minoru Osada and Ryo Kitaura
{"title":"Covalent functionalization of transition metal dichalcogenides with perylene for light harvesting devices†","authors":"Ruben Canton-Vitoria, Yuki Matsunaga, Shaochun Zhang, Mengsong Xue, Minoru Osada and Ryo Kitaura","doi":"10.1039/D4NR05364H","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the optical and electronic properties of eight two-dimensional transition metal chalcogenides (TMDs)—MoS<small><sub>2</sub></small>, WS<small><sub>2</sub></small>, MoSe<small><sub>2</sub></small>, WSe<small><sub>2</sub></small>, MoTe<small><sub>2</sub></small>, WTe<small><sub>2</sub></small>, MoO<small><sub>2</sub></small>, and WO<small><sub>2</sub></small>—covalently functionalized with perylene, forming zero-dimensional/two-dimensional hybrid materials. Comprehensive characterization was conducted using techniques including XPS, Raman, EDX, TEM, and AFM. Optical properties were assessed using UV-Vis-NIR absorption and photoluminescence spectroscopy, while electronic properties were examined through cyclic voltammetry and field-effect transistor devices. Notably, the spectroscopic signatures of isolated perylene predominate in the hybrid materials, while WSe<small><sub>2</sub></small> and MoSe<small><sub>2</sub></small> displayed a novel band in the near-IR region, and MoTe<small><sub>2</sub></small> exhibited enhanced conductivity. Perylene significantly boosted absorption between 400–600 nm, leading to remarkable improvements in the photo-response and responsivities showing values exceeding 2 × 10<small><sup>5</sup></small>% and 2 × 10<small><sup>4</sup></small> mA W<small><sup>−1</sup></small>, respectively. The presented hybrid materials rival the best examples of non-covalent functionalization, underscoring the potential of covalent functionalization as a powerful technique for further tailoring the optical and electronic properties of 2D materials.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 13","pages":" 8084-8100"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr05364h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05364h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the optical and electronic properties of eight two-dimensional transition metal chalcogenides (TMDs)—MoS2, WS2, MoSe2, WSe2, MoTe2, WTe2, MoO2, and WO2—covalently functionalized with perylene, forming zero-dimensional/two-dimensional hybrid materials. Comprehensive characterization was conducted using techniques including XPS, Raman, EDX, TEM, and AFM. Optical properties were assessed using UV-Vis-NIR absorption and photoluminescence spectroscopy, while electronic properties were examined through cyclic voltammetry and field-effect transistor devices. Notably, the spectroscopic signatures of isolated perylene predominate in the hybrid materials, while WSe2 and MoSe2 displayed a novel band in the near-IR region, and MoTe2 exhibited enhanced conductivity. Perylene significantly boosted absorption between 400–600 nm, leading to remarkable improvements in the photo-response and responsivities showing values exceeding 2 × 105% and 2 × 104 mA W−1, respectively. The presented hybrid materials rival the best examples of non-covalent functionalization, underscoring the potential of covalent functionalization as a powerful technique for further tailoring the optical and electronic properties of 2D materials.

Abstract Image

光捕获装置中过渡金属二硫族化合物与苝共价功能化研究
本研究探讨了八种二维过渡金属瑀(TMDs)--MoS2、WS2、MoSe2、WSe2、MoTe2、WTe2、MoO2 和 WO2--与过烯烃共价,形成零维/二维混合材料的光学和电子特性。利用 XPS、拉曼、EDX、TEM 和原子力显微镜等技术进行了综合表征。利用紫外-可见-近红外吸收光谱和光致发光光谱评估了光学特性,并通过循环伏安法和场效应晶体管器件检验了电子特性。值得注意的是,在杂化材料中,分离的过烯烃的光谱特征占主导地位,而 WSe2 和 MoSe2 在近红外区域显示出一个新的波段,MoTe2 则显示出更强的导电性。苝显著提高了 400-600 纳米之间的吸收率,从而显著改善了光响应和响应度,其值分别超过 2x105% 和 2x104 mA/W。所展示的混合材料是非共价官能化的最佳范例,凸显了共价官能化作为进一步定制二维材料光学和电子特性的强大技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信