Swapping CO2 electro-reduction active sites on a nickel-based hybrid formed on a “guilty” covalent triazine framework†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-02-27 DOI:10.1039/D4NR05259E
Giulia Tuci, Miriam Moro, Andrea Rossin, Claudio Evangelisti, Lorenzo Poggini, Marco Etzi, Enrico Verlato, Francesco Paolucci, Yuefeng Liu, Giovanni Valenti and Giuliano Giambastiani
{"title":"Swapping CO2 electro-reduction active sites on a nickel-based hybrid formed on a “guilty” covalent triazine framework†","authors":"Giulia Tuci, Miriam Moro, Andrea Rossin, Claudio Evangelisti, Lorenzo Poggini, Marco Etzi, Enrico Verlato, Francesco Paolucci, Yuefeng Liu, Giovanni Valenti and Giuliano Giambastiani","doi":"10.1039/D4NR05259E","DOIUrl":null,"url":null,"abstract":"<p >A homogeneous and almost monodisperse Ni/CTF<small><sup>ph</sup></small> composite of ultrasmall Ni NPs (∼2.2 nm) has been prepared by Metal Vapor Synthesis (MVS) and deposited on a highly porous and high specific surface area covalent triazine network. Metal doping was deliberately carried out on a metal-free system exhibiting superior CO<small><sub>2</sub></small>RR selectivity towards the challenging CO<small><sub>2</sub></small>-to-HCOOH electroreduction. Electrochemical studies aimed at shedding light on the CO<small><sub>2</sub></small>RR performance of the ultimate composite have allowed speculation on the synergistic or exclusive action of the two potentially active phases (N-doped C-network <em>vs</em>. Ni NPs). In contrast to the generally exclusive CO<small><sub>2</sub></small>-to-CO reduction mechanism described for the <em>state-of-the-art</em> Ni NP-based CO<small><sub>2</sub></small>RR electrocatalysts, Ni/CTF<small><sup>ph</sup></small> has unveiled the unprecedented ability of Ni NPs to promote the alternative and more challenging 2e<small><sup>−</sup></small> CO<small><sub>2</sub></small>-to-HCOOH reduction pathway, even at moderately reducing potentials (−0.3 V <em>vs</em>. RHE).</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 14","pages":" 8850-8860"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr05259e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05259e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A homogeneous and almost monodisperse Ni/CTFph composite of ultrasmall Ni NPs (∼2.2 nm) has been prepared by Metal Vapor Synthesis (MVS) and deposited on a highly porous and high specific surface area covalent triazine network. Metal doping was deliberately carried out on a metal-free system exhibiting superior CO2RR selectivity towards the challenging CO2-to-HCOOH electroreduction. Electrochemical studies aimed at shedding light on the CO2RR performance of the ultimate composite have allowed speculation on the synergistic or exclusive action of the two potentially active phases (N-doped C-network vs. Ni NPs). In contrast to the generally exclusive CO2-to-CO reduction mechanism described for the state-of-the-art Ni NP-based CO2RR electrocatalysts, Ni/CTFph has unveiled the unprecedented ability of Ni NPs to promote the alternative and more challenging 2e CO2-to-HCOOH reduction pathway, even at moderately reducing potentials (−0.3 V vs. RHE).

Abstract Image

在“有罪”共价三嗪框架上形成的镍基杂化物上通勤二氧化碳电还原活性位点
采用金属气相合成(MVS)技术在高孔高比表面积共价三嗪网络上制备了一种均匀且几乎单分散的Ni/CTFph超小Ni NPs (~ 2.2 nm)复合材料。金属掺杂在无金属体系中进行,对具有挑战性的CO2-to-HCOOH电还原表现出优异的CO2RR选择性。电化学研究旨在揭示最终复合材料的CO2RR性能,可以推测两种潜在活性相(n掺杂c -网络与Ni NPs)的协同或排他作用。与基于Ni NPs的最先进CO2RR电催化剂普遍具有的CO2-to-CO还原机制不同,Ni/CTFph揭示了Ni NPs的前所未有的能力,可以促进替代的更具挑战性的2e- CO2-to-HCOOH还原路径,该路径已经处于中等还原电位(-0.3 V vs. RHE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信