Structures of a natural circularly permuted group II intron reveal mechanisms of branching and backsplicing

Xiaobin Ling, Yuqi Yao, Jinbiao Ma
{"title":"Structures of a natural circularly permuted group II intron reveal mechanisms of branching and backsplicing","authors":"Xiaobin Ling, Yuqi Yao, Jinbiao Ma","doi":"10.1038/s41594-025-01489-6","DOIUrl":null,"url":null,"abstract":"<p>Circularly permuted (CP) group II introns, identified in various bacteria phyla, swap domains D5 and D6 near the 5′ end and have reversed splice sites (SSs), leading to backsplicing and circular RNA formation. In this study, we present multiple high-resolution cryo-electron microscopy structures of a natural CP group II intron from <i>Comamonas testosteroni</i> KF-1 (<i>Cte</i> 1), elucidating the molecular mechanisms of branching and backsplicing. During branching, the 5′ SS is positioned by an auxiliary sequence (AUX)-enhanced interaction between the exon-binding site and intron-binding site (IBS) and stacks on the branch-site adenosine within D6, allowing the attacking 2′-OH group to coordinate with a metal ion in the active center. In backsplicing, the 3′ SS is aligned with the branching step, leaving IBS in the active center, stabilized by base pairing with the AUX, which enables the free 3′-end hydroxyl group to directly attack the scissile phosphate of 3′ SS. Furthermore, a groove in <i>Cte</i> 1 may stabilize the circular RNA. These findings highlight a conserved catalytic mechanism for canonical group II introns, albeit facilitated by the versatile AUX, opening avenues for designing potent ribozymes producing circular RNAs.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01489-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Circularly permuted (CP) group II introns, identified in various bacteria phyla, swap domains D5 and D6 near the 5′ end and have reversed splice sites (SSs), leading to backsplicing and circular RNA formation. In this study, we present multiple high-resolution cryo-electron microscopy structures of a natural CP group II intron from Comamonas testosteroni KF-1 (Cte 1), elucidating the molecular mechanisms of branching and backsplicing. During branching, the 5′ SS is positioned by an auxiliary sequence (AUX)-enhanced interaction between the exon-binding site and intron-binding site (IBS) and stacks on the branch-site adenosine within D6, allowing the attacking 2′-OH group to coordinate with a metal ion in the active center. In backsplicing, the 3′ SS is aligned with the branching step, leaving IBS in the active center, stabilized by base pairing with the AUX, which enables the free 3′-end hydroxyl group to directly attack the scissile phosphate of 3′ SS. Furthermore, a groove in Cte 1 may stabilize the circular RNA. These findings highlight a conserved catalytic mechanism for canonical group II introns, albeit facilitated by the versatile AUX, opening avenues for designing potent ribozymes producing circular RNAs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信