{"title":"Decays of the light hybrid meson 1−+","authors":"G. Daylan Esmer, K. Azizi, H. Sundu, S. Türkmen","doi":"10.1103/physrevd.111.034041","DOIUrl":null,"url":null,"abstract":"The full width of the light isovector hybrid meson H</a:mi>V</a:mi></a:msub></a:math> with spin-parities <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:msup><d:mrow><d:mn>1</d:mn></d:mrow><d:mrow><d:mo>−</d:mo><d:mo>+</d:mo></d:mrow></d:msup></d:mrow></d:math> and content <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:mo stretchy=\"false\">(</f:mo><f:mover accent=\"true\"><f:mrow><f:mi>u</f:mi></f:mrow><f:mrow><f:mo stretchy=\"false\">¯</f:mo></f:mrow></f:mover><f:mi>g</f:mi><f:mi>u</f:mi><f:mo>−</f:mo><f:mover accent=\"true\"><f:mrow><f:mi>d</f:mi></f:mrow><f:mrow><f:mo stretchy=\"false\">¯</f:mo></f:mrow></f:mover><f:mi>g</f:mi><f:mi>d</f:mi><f:mo stretchy=\"false\">)</f:mo><f:mo>/</f:mo><f:msqrt><f:mrow><f:mn>2</f:mn></f:mrow></f:msqrt></f:mrow></f:math> is evaluated by considering the decays <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mrow><n:msub><n:mrow><n:mi>H</n:mi></n:mrow><n:mrow><n:mi mathvariant=\"normal\">V</n:mi></n:mrow></n:msub><n:mo stretchy=\"false\">→</n:mo><n:msup><n:mrow><n:mi>ρ</n:mi></n:mrow><n:mrow><n:mo>±</n:mo></n:mrow></n:msup><n:msup><n:mrow><n:mi>π</n:mi></n:mrow><n:mrow><n:mo>∓</n:mo></n:mrow></n:msup></n:mrow></n:math>, <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mrow><r:msubsup><r:mrow><r:mi>b</r:mi></r:mrow><r:mrow><r:mn>1</r:mn></r:mrow><r:mrow><r:mo>±</r:mo></r:mrow></r:msubsup><r:msup><r:mrow><r:mi>π</r:mi></r:mrow><r:mrow><r:mo>∓</r:mo></r:mrow></r:msup></r:mrow></r:math>, <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mrow><t:msub><t:mrow><t:mi>f</t:mi></t:mrow><t:mrow><t:mn>1</t:mn></t:mrow></t:msub><t:mo stretchy=\"false\">(</t:mo><t:mn>1285</t:mn><t:mo stretchy=\"false\">)</t:mo><t:mi>π</t:mi></t:mrow></t:math>, <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mrow><x:msub><x:mrow><x:mi>f</x:mi></x:mrow><x:mrow><x:mn>1</x:mn></x:mrow></x:msub><x:mo stretchy=\"false\">(</x:mo><x:mn>1420</x:mn><x:mo stretchy=\"false\">)</x:mo><x:mi>π</x:mi></x:mrow></x:math>, <bb:math xmlns:bb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bb:mi>η</bb:mi><bb:mi>π</bb:mi></bb:math>, and <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:msup><db:mi>η</db:mi><db:mo>′</db:mo></db:msup><db:mi>π</db:mi></db:math>. To calculate the partial widths of these channels, we use the quantum chromodynamics (QCD) three-point sum rule method which is necessary to determine strong couplings at the corresponding hybrid-meson-meson vertices. It turns out that the main contribution to the full width <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mrow><fb:mi mathvariant=\"normal\">Γ</fb:mi><fb:mo stretchy=\"false\">[</fb:mo><fb:msub><fb:mrow><fb:mi>H</fb:mi></fb:mrow><fb:mrow><fb:mi mathvariant=\"normal\">V</fb:mi></fb:mrow></fb:msub><fb:mo stretchy=\"false\">]</fb:mo><fb:mo>=</fb:mo><fb:mo stretchy=\"false\">(</fb:mo><fb:mn>109.7</fb:mn><fb:mo>±</fb:mo><fb:mn>16.0</fb:mn><fb:mo stretchy=\"false\">)</fb:mo><fb:mtext> </fb:mtext><fb:mtext> </fb:mtext><fb:mi>MeV</fb:mi></fb:mrow></fb:math> of the hybrid meson comes from the processes <nb:math xmlns:nb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nb:msub><nb:mi>H</nb:mi><nb:mi mathvariant=\"normal\">V</nb:mi></nb:msub><nb:mo stretchy=\"false\">→</nb:mo><nb:msup><nb:mi>ρ</nb:mi><nb:mo>±</nb:mo></nb:msup><nb:msup><nb:mi>π</nb:mi><nb:mo>∓</nb:mo></nb:msup></nb:math> partial width of which amounts to <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mo>≈</rb:mo><rb:mn>67</rb:mn><rb:mtext> </rb:mtext><rb:mtext> </rb:mtext><rb:mi>MeV</rb:mi></rb:math>. The effects of the decays <tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:msub><tb:mi>H</tb:mi><tb:mi mathvariant=\"normal\">V</tb:mi></tb:msub><tb:mo stretchy=\"false\">→</tb:mo><tb:msub><tb:mi>b</tb:mi><tb:mn>1</tb:mn></tb:msub><tb:mi>π</tb:mi></tb:math> and <xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:mrow><xb:msub><xb:mrow><xb:mi>H</xb:mi></xb:mrow><xb:mrow><xb:mi mathvariant=\"normal\">V</xb:mi></xb:mrow></xb:msub><xb:mo stretchy=\"false\">→</xb:mo><xb:msub><xb:mrow><xb:mi>f</xb:mi></xb:mrow><xb:mrow><xb:mn>1</xb:mn></xb:mrow></xb:msub><xb:mi>π</xb:mi><xb:mo>,</xb:mo><xb:msubsup><xb:mrow><xb:mi>f</xb:mi></xb:mrow><xb:mrow><xb:mn>1</xb:mn></xb:mrow><xb:mrow><xb:mo>′</xb:mo></xb:mrow></xb:msubsup><xb:mi>π</xb:mi></xb:mrow></xb:math> are also sizeable: Their partial widths are equal to 13 MeV and 20 MeV, respectively. The decays to <bc:math xmlns:bc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bc:mi>η</bc:mi><bc:mi>π</bc:mi></bc:math> and <dc:math xmlns:dc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dc:msup><dc:mi>η</dc:mi><dc:mo>′</dc:mo></dc:msup><dc:mi>π</dc:mi></dc:math> mesons are subdominant reactions, nevertheless they form <fc:math xmlns:fc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fc:mo>≈</fc:mo><fc:mn>9</fc:mn><fc:mo>%</fc:mo></fc:math> of the full width <hc:math xmlns:hc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><hc:mi mathvariant=\"normal\">Γ</hc:mi><hc:mo stretchy=\"false\">[</hc:mo><hc:msub><hc:mi>H</hc:mi><hc:mi mathvariant=\"normal\">V</hc:mi></hc:msub><hc:mo stretchy=\"false\">]</hc:mo></hc:math>. Results obtained in this work may be interesting to unravel the tangle of predictions about <nc:math xmlns:nc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nc:msub><nc:mi>H</nc:mi><nc:mi mathvariant=\"normal\">V</nc:mi></nc:msub></nc:math> existing in the literature, as well as useful in analyses of different resonances. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"90 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034041","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The full width of the light isovector hybrid meson HV with spin-parities 1−+ and content (u¯gu−d¯gd)/2 is evaluated by considering the decays HV→ρ±π∓, b1±π∓, f1(1285)π, f1(1420)π, ηπ, and η′π. To calculate the partial widths of these channels, we use the quantum chromodynamics (QCD) three-point sum rule method which is necessary to determine strong couplings at the corresponding hybrid-meson-meson vertices. It turns out that the main contribution to the full width Γ[HV]=(109.7±16.0)MeV of the hybrid meson comes from the processes HV→ρ±π∓ partial width of which amounts to ≈67MeV. The effects of the decays HV→b1π and HV→f1π,f1′π are also sizeable: Their partial widths are equal to 13 MeV and 20 MeV, respectively. The decays to ηπ and η′π mesons are subdominant reactions, nevertheless they form ≈9% of the full width Γ[HV]. Results obtained in this work may be interesting to unravel the tangle of predictions about HV existing in the literature, as well as useful in analyses of different resonances. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.