{"title":"Geometry of Carrollian stretched horizons","authors":"Laurent Freidel and Puttarak Jai-akson","doi":"10.1088/1361-6382/adaf6e","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comprehensive toolbox for studying Carrollian stretched horizons, encompassing their geometry, dynamics, symplectic geometry, symmetries, and corresponding Noether charges. We introduce a precise definition of ruled stretched Carrollian structures (sCarrollian structures) on any surface, generalizing the conventional Carrollian structures of null surfaces, along with the notions of sCarrollian connection and sCarrollian stress tensor. Our approach unifies the sCarrollian (intrinsic) and stretched horizon (embedding) perspectives, providing a universal framework for any causal surface, whether timelike or null. We express the Einstein equations in sCarrollian variables and discuss the phase space symplectic structure of the sCarrollian geometry. Through Noether’s theorem, we derive the Einstein equation and canonical charge and compute the evolution of the canonical charge along the transverse (radial) direction. The latter can be interpreted as a spin-2 symmetry charge. Our framework establishes a novel link between gravity on stretched horizons and Carrollian fluid dynamics and unifies various causal surfaces studied in the literature, including non-expanding and isolated horizons. We expect this work to provide insights into the hydrodynamical description of black holes and the quantization of null surfaces.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"15 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adaf6e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a comprehensive toolbox for studying Carrollian stretched horizons, encompassing their geometry, dynamics, symplectic geometry, symmetries, and corresponding Noether charges. We introduce a precise definition of ruled stretched Carrollian structures (sCarrollian structures) on any surface, generalizing the conventional Carrollian structures of null surfaces, along with the notions of sCarrollian connection and sCarrollian stress tensor. Our approach unifies the sCarrollian (intrinsic) and stretched horizon (embedding) perspectives, providing a universal framework for any causal surface, whether timelike or null. We express the Einstein equations in sCarrollian variables and discuss the phase space symplectic structure of the sCarrollian geometry. Through Noether’s theorem, we derive the Einstein equation and canonical charge and compute the evolution of the canonical charge along the transverse (radial) direction. The latter can be interpreted as a spin-2 symmetry charge. Our framework establishes a novel link between gravity on stretched horizons and Carrollian fluid dynamics and unifies various causal surfaces studied in the literature, including non-expanding and isolated horizons. We expect this work to provide insights into the hydrodynamical description of black holes and the quantization of null surfaces.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.