Stbd1 stimulates AMPK signaling and alleviates insulin resistance in an in vitro hepatocyte model.

Andria Theodoulou, Thilo Speckmann, Louiza Potamiti, Otto Baba, Tsuyoshi Morita, Anthi Drousiotou, Mihalis I Panayiotidis, Annette Schürmann, Petros P Petrou
{"title":"Stbd1 stimulates AMPK signaling and alleviates insulin resistance in an in vitro hepatocyte model.","authors":"Andria Theodoulou, Thilo Speckmann, Louiza Potamiti, Otto Baba, Tsuyoshi Morita, Anthi Drousiotou, Mihalis I Panayiotidis, Annette Schürmann, Petros P Petrou","doi":"10.1111/febs.70040","DOIUrl":null,"url":null,"abstract":"<p><p>Starch-binding domain-containing protein 1 (Stbd1) is a glycogen-binding protein which localizes to the endoplasmic reticulum (ER) membrane and ER-mitochondria contact sites (ERMCs). The protein undergoes N-myristoylation, which is a major determinant of its subcellular targeting. Stbd1 has been implicated in the control of glucose homeostasis, as evidenced by the finding that mice with targeted inactivation of Stbd1 display insulin resistance associated with increased ERMCs in the liver. In the present study, we addressed the effects of increased Stbd1 expression levels on insulin signaling. We show that Stbd1 overexpression enhances cellular sensitivity to insulin and improves insulin resistance in an in vitro hepatocyte cell model. We further demonstrate that increased Stbd1 expression levels are associated with enhanced activation of the AMP-activated protein kinase (AMPK), which is a central regulator of metabolism and an attractive therapeutic target for metabolic disorders related to insulin resistance, such as type 2 diabetes (T2D). The activation of AMPK signaling and the improved cellular response to insulin induced by Stbd1 overexpression occurred independently of N-myristoylation and associated changes in the number of ERMCs, glycogen levels, mitochondrial calcium, mitochondrial morphology, and respiratory function. Collectively, our findings uncover a new level of interaction between Stbd1 and AMPK, with Stbd1 acting as an upstream activator of AMPK signaling. Given that first-line drug treatments for insulin resistance and T2D are known activators of the AMPK pathway, these findings may provide a new perspective for the development of more effective therapeutic strategies.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Starch-binding domain-containing protein 1 (Stbd1) is a glycogen-binding protein which localizes to the endoplasmic reticulum (ER) membrane and ER-mitochondria contact sites (ERMCs). The protein undergoes N-myristoylation, which is a major determinant of its subcellular targeting. Stbd1 has been implicated in the control of glucose homeostasis, as evidenced by the finding that mice with targeted inactivation of Stbd1 display insulin resistance associated with increased ERMCs in the liver. In the present study, we addressed the effects of increased Stbd1 expression levels on insulin signaling. We show that Stbd1 overexpression enhances cellular sensitivity to insulin and improves insulin resistance in an in vitro hepatocyte cell model. We further demonstrate that increased Stbd1 expression levels are associated with enhanced activation of the AMP-activated protein kinase (AMPK), which is a central regulator of metabolism and an attractive therapeutic target for metabolic disorders related to insulin resistance, such as type 2 diabetes (T2D). The activation of AMPK signaling and the improved cellular response to insulin induced by Stbd1 overexpression occurred independently of N-myristoylation and associated changes in the number of ERMCs, glycogen levels, mitochondrial calcium, mitochondrial morphology, and respiratory function. Collectively, our findings uncover a new level of interaction between Stbd1 and AMPK, with Stbd1 acting as an upstream activator of AMPK signaling. Given that first-line drug treatments for insulin resistance and T2D are known activators of the AMPK pathway, these findings may provide a new perspective for the development of more effective therapeutic strategies.

在体外肝细胞模型中,Stbd1 可刺激 AMPK 信号转导并缓解胰岛素抵抗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信