Novel strategies in topical delivery for psoriasis treatment: nanocarriers and energy-driven approaches.

Expert opinion on drug delivery Pub Date : 2025-04-01 Epub Date: 2025-03-02 DOI:10.1080/17425247.2025.2472968
Cheng-Yu Lin, Zih-Chan Lin, Yen-Tzu Chang, Tsai-Jie Lin, Jia-You Fang
{"title":"Novel strategies in topical delivery for psoriasis treatment: nanocarriers and energy-driven approaches.","authors":"Cheng-Yu Lin, Zih-Chan Lin, Yen-Tzu Chang, Tsai-Jie Lin, Jia-You Fang","doi":"10.1080/17425247.2025.2472968","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Psoriasis is characterized by abnormal differentiation and hyperproliferation of epidermal keratinocytes. This condition presents significant challenges for effective drug delivery. In addition to overcoming the thickness of the skin, topical treatments must navigate the complex hydrophobic and hydrophilic properties of the skin barrier. Recent advancements in nanocarrier technologies, including energy-driven methods and microneedles that penetrate the stratum corneum, present promising strategies for enhancing drug permeation through tailored physicochemical properties. A literature search was performed using the databases of Google Scholar, PubMed, and ScienceDirect.</p><p><strong>Areas covered: </strong>This review highlights recent studies on novel topical delivery methods for psoriasis treatment, addressing current therapeutic options and their limitations. We provide a comprehensive overview of chemical nanoformulations and explore physical strategies to improve delivery rates. Furthermore, we discuss the advantages of various formulations that can carry different types of payloads, offering patients diverse strategies for symptom management. The review covers conventional treatments, emphasizing advancements in nanoparticle design and novel macromolecular drugs. This includes Ribonucleic acid (RNA)-based therapies that protect macromolecular drugs from rapid clearance in the body.</p><p><strong>Expert opinion: </strong>We argue that intelligent design approaches can enhance efficacy across delivery applications while allowing for precision in treatment strategies, ultimately improving patient outcomes.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"565-581"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2472968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Psoriasis is characterized by abnormal differentiation and hyperproliferation of epidermal keratinocytes. This condition presents significant challenges for effective drug delivery. In addition to overcoming the thickness of the skin, topical treatments must navigate the complex hydrophobic and hydrophilic properties of the skin barrier. Recent advancements in nanocarrier technologies, including energy-driven methods and microneedles that penetrate the stratum corneum, present promising strategies for enhancing drug permeation through tailored physicochemical properties. A literature search was performed using the databases of Google Scholar, PubMed, and ScienceDirect.

Areas covered: This review highlights recent studies on novel topical delivery methods for psoriasis treatment, addressing current therapeutic options and their limitations. We provide a comprehensive overview of chemical nanoformulations and explore physical strategies to improve delivery rates. Furthermore, we discuss the advantages of various formulations that can carry different types of payloads, offering patients diverse strategies for symptom management. The review covers conventional treatments, emphasizing advancements in nanoparticle design and novel macromolecular drugs. This includes Ribonucleic acid (RNA)-based therapies that protect macromolecular drugs from rapid clearance in the body.

Expert opinion: We argue that intelligent design approaches can enhance efficacy across delivery applications while allowing for precision in treatment strategies, ultimately improving patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信