LRP5 promotes adipose progenitor cell fitness and adipocyte insulin sensitivity.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Nellie Y Loh, Senthil K Vasan, Daniel B Rosoff, Emile Roberts, Andrea D van Dam, Manu Verma, Daniel Phillips, Agata Wesolowska-Andersen, Matt J Neville, Raymond Noordam, David W Ray, Jonathan H Tobias, Celia L Gregson, Fredrik Karpe, Constantinos Christodoulides
{"title":"LRP5 promotes adipose progenitor cell fitness and adipocyte insulin sensitivity.","authors":"Nellie Y Loh, Senthil K Vasan, Daniel B Rosoff, Emile Roberts, Andrea D van Dam, Manu Verma, Daniel Phillips, Agata Wesolowska-Andersen, Matt J Neville, Raymond Noordam, David W Ray, Jonathan H Tobias, Celia L Gregson, Fredrik Karpe, Constantinos Christodoulides","doi":"10.1038/s43856-025-00774-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>WNT signaling plays a key role in postnatal bone formation. Individuals with gain-of-function mutations in the WNT co-receptor LRP5 exhibit increased lower-body fat mass and potentially enhanced glucose metabolism, alongside high bone mass. However, the mechanisms by which LRP5 regulates fat distribution and its effects on systemic metabolism remain unclear. This study aims to explore the role of LRP5 in adipose tissue biology and its impact on metabolism.</p><p><strong>Methods: </strong>Metabolic assessments and imaging were conducted on individuals with gain- and loss-of-function LRP5 mutations, along with age- and BMI-matched controls. Mendelian randomization analyses were used to investigate the relationship between bone, fat distribution, and systemic metabolism. Functional studies and RNA sequencing were performed on abdominal and gluteal adipose cells with LRP5 knockdown.</p><p><strong>Results: </strong>Here we show that LRP5 promotes lower-body fat distribution and enhances systemic and adipocyte insulin sensitivity through cell-autonomous mechanisms, independent of its bone-related functions. LRP5 supports adipose progenitor cell function by activating WNT/β-catenin signaling and preserving valosin-containing protein (VCP)-mediated proteostasis. LRP5 expression in adipose progenitors declines with age, but gain-of-function LRP5 variants protect against age-related fat loss in the lower body.</p><p><strong>Conclusions: </strong>Our findings underscore the critical role of LRP5 in regulating lower-body fat distribution and insulin sensitivity, independent of its effects on bone. Pharmacological activation of LRP5 in adipose tissue may offer a promising strategy to prevent age-related fat redistribution and metabolic disorders.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"51"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00774-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: WNT signaling plays a key role in postnatal bone formation. Individuals with gain-of-function mutations in the WNT co-receptor LRP5 exhibit increased lower-body fat mass and potentially enhanced glucose metabolism, alongside high bone mass. However, the mechanisms by which LRP5 regulates fat distribution and its effects on systemic metabolism remain unclear. This study aims to explore the role of LRP5 in adipose tissue biology and its impact on metabolism.

Methods: Metabolic assessments and imaging were conducted on individuals with gain- and loss-of-function LRP5 mutations, along with age- and BMI-matched controls. Mendelian randomization analyses were used to investigate the relationship between bone, fat distribution, and systemic metabolism. Functional studies and RNA sequencing were performed on abdominal and gluteal adipose cells with LRP5 knockdown.

Results: Here we show that LRP5 promotes lower-body fat distribution and enhances systemic and adipocyte insulin sensitivity through cell-autonomous mechanisms, independent of its bone-related functions. LRP5 supports adipose progenitor cell function by activating WNT/β-catenin signaling and preserving valosin-containing protein (VCP)-mediated proteostasis. LRP5 expression in adipose progenitors declines with age, but gain-of-function LRP5 variants protect against age-related fat loss in the lower body.

Conclusions: Our findings underscore the critical role of LRP5 in regulating lower-body fat distribution and insulin sensitivity, independent of its effects on bone. Pharmacological activation of LRP5 in adipose tissue may offer a promising strategy to prevent age-related fat redistribution and metabolic disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信