Metabolic Energy is Stored in a Homeostatic Trans-Membrane Water Barochemical Gradient.

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Charles S Springer, Martin M Pike, Thomas M Barbara
{"title":"Metabolic Energy is Stored in a Homeostatic Trans-Membrane Water Barochemical Gradient.","authors":"Charles S Springer, Martin M Pike, Thomas M Barbara","doi":"10.1007/s00232-024-00332-1","DOIUrl":null,"url":null,"abstract":"<p><p>Trans-membrane water transport and co-transport is ubiquitous in cell biology. Integrated over all the cell's H<sub>2</sub>O transporters and co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water \"exchange\" is synchronized with the metabolic rate of the crucial Na<sup>+</sup>,K<sup>+</sup>-ATPase (NKA) enzyme: the active trans-membrane water cycling (AWC) phenomenon. Is AWC futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy (ΔG) calculations for the many transport reactions with known water stoichiometries. Including established intracellular pressure (P<sub>i</sub>) magnitudes, these reveal an outward trans-membrane H<sub>2</sub>O barochemical ΔG gradient comparable to that of the well-known inward Na<sup>+</sup> electrochemical ΔG gradient. For most co-influxers, these two gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. Our analyses include glucose, glutamate<sup>-</sup>, gamma-aminobutyric acid (GABA), and lactate<sup>-</sup> transporters. 2%-4% P<sub>i</sub> alterations can lead to disastrous metabolite concentrations. For the neurotransmitters glutamate<sup>-</sup> and GABA, very small astrocytic P<sub>i</sub> changes can allow/disallow synaptic transmission. Unlike the Na<sup>+</sup> and K<sup>+</sup> electrochemical steady-states, the H<sub>2</sub>O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate trans-membrane pressure gradients. A feedback loop inherent in the opposing Na<sup>+</sup> electrochemical and H<sub>2</sub>O barochemical gradients regulates AQP-catalyzed water flux as integral to AWC. A re-consideration of the underlying nature of P<sub>i</sub> is also necessary. AWC is not a futile cycle but is inherent to the cell's \"NKA system\"-a new, fundamental aspect of biology. Metabolic energy is stored in the trans-membrane water barochemical gradient.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00332-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Trans-membrane water transport and co-transport is ubiquitous in cell biology. Integrated over all the cell's H2O transporters and co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water "exchange" is synchronized with the metabolic rate of the crucial Na+,K+-ATPase (NKA) enzyme: the active trans-membrane water cycling (AWC) phenomenon. Is AWC futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy (ΔG) calculations for the many transport reactions with known water stoichiometries. Including established intracellular pressure (Pi) magnitudes, these reveal an outward trans-membrane H2O barochemical ΔG gradient comparable to that of the well-known inward Na+ electrochemical ΔG gradient. For most co-influxers, these two gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. Our analyses include glucose, glutamate-, gamma-aminobutyric acid (GABA), and lactate- transporters. 2%-4% Pi alterations can lead to disastrous metabolite concentrations. For the neurotransmitters glutamate- and GABA, very small astrocytic Pi changes can allow/disallow synaptic transmission. Unlike the Na+ and K+ electrochemical steady-states, the H2O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate trans-membrane pressure gradients. A feedback loop inherent in the opposing Na+ electrochemical and H2O barochemical gradients regulates AQP-catalyzed water flux as integral to AWC. A re-consideration of the underlying nature of Pi is also necessary. AWC is not a futile cycle but is inherent to the cell's "NKA system"-a new, fundamental aspect of biology. Metabolic energy is stored in the trans-membrane water barochemical gradient.

代谢能量储存在稳态跨膜水压力化学梯度中。
跨膜水转运和共转运在细胞生物学中普遍存在。综合所有细胞的水转运蛋白和共转运蛋白,稳态、双向跨细胞质水“交换”的速率与关键的Na+,K+- atp酶(NKA)酶的代谢速率同步,即活性跨膜水循环(AWC)现象。AWC是无用的,还是重要的?保守的代表性文献代谢组学和蛋白质组学的结果能够对许多已知水化学计量的转运反应进行全面的自由能计算(ΔG)。包括已建立的细胞内压力(Pi)大小,这些显示出向外跨膜的H2O压力化学ΔG梯度与众所周知的向内Na+电化学ΔG梯度相当。对于大多数共流入物,这两个梯度被很好地平衡,以保持细胞内代谢物浓度值接近其消耗酶米切利斯常数。我们的分析包括葡萄糖、谷氨酸、γ -氨基丁酸(GABA)和乳酸转运蛋白。2%-4%的Pi变化会导致灾难性的代谢物浓度。对于神经递质谷氨酸-和GABA,星形细胞π的微小变化可以允许/不允许突触传递。与Na+和K+电化学稳态不同,H2O压力化学稳态处于(或接近)化学平衡。分析表明为什么水通道蛋白(AQPs)的存在不会消散跨膜压力梯度。相反的Na+电化学和H2O压力化学梯度中固有的反馈回路调节aqp催化的水通量,作为AWC的一部分。重新考虑圆周率的本质也是必要的。AWC并不是一个无用的循环,而是细胞的“NKA系统”所固有的——这是生物学的一个新的、基本的方面。代谢能量储存在跨膜水压力化学梯度中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信