{"title":"Torque Loss, Survival, and Strain Distribution of Implant-Supported Prostheses with Zirconia and Cobalt-Chromium Hybrid Abutments.","authors":"Renata Cristina Silveira Rodrigues, Lívia Fiorin, Adriana Cláudia Lapria Faria, Estevam Augusto Bonfante, Ricardo Faria Ribeiro","doi":"10.3390/medicina61020274","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background and Objectives</i>: The manufacturing of single crowns using hybrid abutments is an alternative that may be interesting in clinical practice, combining the advantages of the different materials used in a personalized design for each case. The purpose of this in vitro study was to evaluate the torque loss, survival, reliability, failure mode, and strain distribution of implant-supported prostheses with zirconia (Zir) and cobalt-chromium (Co-Cr) hybrid abutments. <i>Materials and Methods</i>: Abutments were milled by CAD/CAM and divided into two groups according to the materials used, Zir and Co-Cr, and cemented on titanium bases screwed to dental implants. Monolithic zirconia crowns were cemented on the abutments. The implant/abutment/crown sets were subjected to thermomechanical cycling (<i>n</i> = 10) (2 Hz, 140 N, 1 × 10<sup>6</sup> cycles, immersed in water at 5-55 °C) to evaluate the torque loss. The single load to fracture test (SLF) was performed to design the loading profiles (light, moderate, and aggressive) of the step-stress accelerated life testing (SSALT) (<i>n</i> = 21) to evaluate the survival and reliability. The representative fractured specimens were analyzed under optical and scanning electron microscopy. The digital image correlation (DIC) (<i>n</i> = 1) was performed using specimens embedded in polyurethane resin models that received static point loading, and the strain distribution was analyzed. <i>Results</i>: There was no difference in torque loss, survival, or reliability between zirconia and Co-Cr abutments. An analysis of the fractured surfaces showed that the abutments presented the same failure mode, where the fracture probably started in the titanium base/screw. The zirconia abutment model presented only compressive strains around the implant, while the Co-Cr abutment model showed tensile and compressive strains in the middle of the implant; however, all strains were within the clinically acceptable limits. There was a strain concentration in the titanium base close to the implant platform for both groups. <i>Conclusions</i>: Zirconia and Co-Cr hybrid abutments presented similar torque loss, survival, reliability, and failure modes, but the abutment material influenced the strain distribution around the implant. The titanium base screw was the weakest link in the system.</p>","PeriodicalId":49830,"journal":{"name":"Medicina-Lithuania","volume":"61 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina-Lithuania","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/medicina61020274","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objectives: The manufacturing of single crowns using hybrid abutments is an alternative that may be interesting in clinical practice, combining the advantages of the different materials used in a personalized design for each case. The purpose of this in vitro study was to evaluate the torque loss, survival, reliability, failure mode, and strain distribution of implant-supported prostheses with zirconia (Zir) and cobalt-chromium (Co-Cr) hybrid abutments. Materials and Methods: Abutments were milled by CAD/CAM and divided into two groups according to the materials used, Zir and Co-Cr, and cemented on titanium bases screwed to dental implants. Monolithic zirconia crowns were cemented on the abutments. The implant/abutment/crown sets were subjected to thermomechanical cycling (n = 10) (2 Hz, 140 N, 1 × 106 cycles, immersed in water at 5-55 °C) to evaluate the torque loss. The single load to fracture test (SLF) was performed to design the loading profiles (light, moderate, and aggressive) of the step-stress accelerated life testing (SSALT) (n = 21) to evaluate the survival and reliability. The representative fractured specimens were analyzed under optical and scanning electron microscopy. The digital image correlation (DIC) (n = 1) was performed using specimens embedded in polyurethane resin models that received static point loading, and the strain distribution was analyzed. Results: There was no difference in torque loss, survival, or reliability between zirconia and Co-Cr abutments. An analysis of the fractured surfaces showed that the abutments presented the same failure mode, where the fracture probably started in the titanium base/screw. The zirconia abutment model presented only compressive strains around the implant, while the Co-Cr abutment model showed tensile and compressive strains in the middle of the implant; however, all strains were within the clinically acceptable limits. There was a strain concentration in the titanium base close to the implant platform for both groups. Conclusions: Zirconia and Co-Cr hybrid abutments presented similar torque loss, survival, reliability, and failure modes, but the abutment material influenced the strain distribution around the implant. The titanium base screw was the weakest link in the system.
期刊介绍:
The journal’s main focus is on reviews as well as clinical and experimental investigations. The journal aims to advance knowledge related to problems in medicine in developing countries as well as developed economies, to disseminate research on global health, and to promote and foster prevention and treatment of diseases worldwide. MEDICINA publications cater to clinicians, diagnosticians and researchers, and serve as a forum to discuss the current status of health-related matters and their impact on a global and local scale.