Lillian Huang, Ellen N Huhulea, Elizabeth Abraham, Raphael Bienenstock, Esewi Aifuwa, Rahim Hirani, Atara Schulhof, Raj K Tiwari, Mill Etienne
{"title":"The Role of Artificial Intelligence in Obesity Risk Prediction and Management: Approaches, Insights, and Recommendations.","authors":"Lillian Huang, Ellen N Huhulea, Elizabeth Abraham, Raphael Bienenstock, Esewi Aifuwa, Rahim Hirani, Atara Schulhof, Raj K Tiwari, Mill Etienne","doi":"10.3390/medicina61020358","DOIUrl":null,"url":null,"abstract":"<p><p>Greater than 650 million individuals worldwide are categorized as obese, which is associated with significant health, economic, and social challenges. Given its overlap with leading comorbidities such as heart disease, innovative solutions are necessary to improve risk prediction and management strategies. In recent years, artificial intelligence (AI) and machine learning (ML) have emerged as powerful tools in healthcare, offering novel approaches to chronic disease prevention. This narrative review explores the role of AI/ML in obesity risk prediction and management, with a special focus on childhood obesity. We begin by examining the multifactorial nature of obesity, including genetic, behavioral, and environmental factors, and the limitations of traditional approaches to predict and treat morbidity associated obesity. Next, we analyze AI/ML techniques commonly used to predict obesity risk, particularly in minimizing childhood obesity risk. We shift to the application of AI/ML in obesity management, comparing perspectives from healthcare providers versus patients. From the provider's perspective, AI/ML tools offer real-time data from electronic medical records, wearables, and health apps to stratify patient risk, customize treatment plans, and enhance clinical decision making. From the patient's perspective, AI/ML-driven interventions offer personalized coaching and improve long-term engagement in health management. Finally, we address key limitations and challenges, such as the role of social determinants of health, in embracing the role of AI/ML in obesity management, while offering our recommendations based on our literature review.</p>","PeriodicalId":49830,"journal":{"name":"Medicina-Lithuania","volume":"61 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina-Lithuania","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/medicina61020358","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Greater than 650 million individuals worldwide are categorized as obese, which is associated with significant health, economic, and social challenges. Given its overlap with leading comorbidities such as heart disease, innovative solutions are necessary to improve risk prediction and management strategies. In recent years, artificial intelligence (AI) and machine learning (ML) have emerged as powerful tools in healthcare, offering novel approaches to chronic disease prevention. This narrative review explores the role of AI/ML in obesity risk prediction and management, with a special focus on childhood obesity. We begin by examining the multifactorial nature of obesity, including genetic, behavioral, and environmental factors, and the limitations of traditional approaches to predict and treat morbidity associated obesity. Next, we analyze AI/ML techniques commonly used to predict obesity risk, particularly in minimizing childhood obesity risk. We shift to the application of AI/ML in obesity management, comparing perspectives from healthcare providers versus patients. From the provider's perspective, AI/ML tools offer real-time data from electronic medical records, wearables, and health apps to stratify patient risk, customize treatment plans, and enhance clinical decision making. From the patient's perspective, AI/ML-driven interventions offer personalized coaching and improve long-term engagement in health management. Finally, we address key limitations and challenges, such as the role of social determinants of health, in embracing the role of AI/ML in obesity management, while offering our recommendations based on our literature review.
期刊介绍:
The journal’s main focus is on reviews as well as clinical and experimental investigations. The journal aims to advance knowledge related to problems in medicine in developing countries as well as developed economies, to disseminate research on global health, and to promote and foster prevention and treatment of diseases worldwide. MEDICINA publications cater to clinicians, diagnosticians and researchers, and serve as a forum to discuss the current status of health-related matters and their impact on a global and local scale.