Screening and Analysis of Potential Aquaculture Spaces for Larimichthys crocea in China's Surrounding Waters Based on Environmental Temperature Suitability.
Ling Yang, Weifeng Zhou, Xuesen Cui, Yanan Lu, Qin Liu
{"title":"Screening and Analysis of Potential Aquaculture Spaces for <i>Larimichthys crocea</i> in China's Surrounding Waters Based on Environmental Temperature Suitability.","authors":"Ling Yang, Weifeng Zhou, Xuesen Cui, Yanan Lu, Qin Liu","doi":"10.3390/biology14020205","DOIUrl":null,"url":null,"abstract":"<p><p>This research evaluates the potential spaces of deep offshore waters for cultivating the <i>Larimichthys crocea</i>, analyzing ocean profile temperature data from 2000 to 2022 according to the species' environmental temperature suitability. There are significant seasonal variations and differences in habitat distributions of different temperature ranges in China's surrounding waters. The range of maximum living space obtained according to the tolerance temperature shows a trend of being larger in summer and smaller in winter; and the range of viable habitat space obtained based on the suitable and optimal temperature shows a trend of being smaller in summer and larger in winter. Broad areas meeting tolerance temperatures offer broad, yet impractical, site selection options. In contrast, areas with optimal temperatures are limited, which means the availability of ideal site locations is very restricted. Regions consistently within the 20-28 °C range are best for practical site selection. Year-round suitable areas are primarily found at depths of 30 to 90 m in the southern East China Sea and the South China Sea, particularly within the 40 to 50 m depth range. Water mass like the South China Sea Surface Water and the Kuroshio Surface Water consistently maintain suitable temperatures, making them ideal for aquaculture.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14020205","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research evaluates the potential spaces of deep offshore waters for cultivating the Larimichthys crocea, analyzing ocean profile temperature data from 2000 to 2022 according to the species' environmental temperature suitability. There are significant seasonal variations and differences in habitat distributions of different temperature ranges in China's surrounding waters. The range of maximum living space obtained according to the tolerance temperature shows a trend of being larger in summer and smaller in winter; and the range of viable habitat space obtained based on the suitable and optimal temperature shows a trend of being smaller in summer and larger in winter. Broad areas meeting tolerance temperatures offer broad, yet impractical, site selection options. In contrast, areas with optimal temperatures are limited, which means the availability of ideal site locations is very restricted. Regions consistently within the 20-28 °C range are best for practical site selection. Year-round suitable areas are primarily found at depths of 30 to 90 m in the southern East China Sea and the South China Sea, particularly within the 40 to 50 m depth range. Water mass like the South China Sea Surface Water and the Kuroshio Surface Water consistently maintain suitable temperatures, making them ideal for aquaculture.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.