Identification of DNA Methylation Differences in Pituitary Tissues of Sichuan White Geese Using Whole-Genome Bisulfite Sequencing (WGBS).

IF 3.6 3区 生物学 Q1 BIOLOGY
Lin Ma, Xianzhi Zhao, Guoda A, Tongtong Song, Meng Wu, Zhihao Yan, Min Xiao, Wenbo Jiang, Yixiao Gao, Haiwei Wang, Zhuping Chen, Keshan Zhang, Jiajia Xue, Yi Luo, Chao Wang, Youhui Xie, Ying Chen, Guangliang Gao, Qigui Wang
{"title":"Identification of DNA Methylation Differences in Pituitary Tissues of Sichuan White Geese Using Whole-Genome Bisulfite Sequencing (WGBS).","authors":"Lin Ma, Xianzhi Zhao, Guoda A, Tongtong Song, Meng Wu, Zhihao Yan, Min Xiao, Wenbo Jiang, Yixiao Gao, Haiwei Wang, Zhuping Chen, Keshan Zhang, Jiajia Xue, Yi Luo, Chao Wang, Youhui Xie, Ying Chen, Guangliang Gao, Qigui Wang","doi":"10.3390/biology14020154","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the impact of epigenetic modifications on egg-laying traits in geese, we employed genome-wide bisulfite sequencing (WGBS) to analyze DNA methylation patterns in pituitary tissues of high-(HYP) and low-yield (LYP) Sichuan White geese. We achieved high-quality sequencing data (mean 19.09 Gb raw reads, 15.49 Gb clean reads, 79.1% unique mapping rate) with a bisulfite conversion efficiency of 99.88%. Comparative analysis revealed 2394 differentially methylated regions (DMRs) and 422 differentially methylated genes (DMGs) between HYP and LYP groups. We identified five key differentially methylated candidate genes (<i>BMPER</i>, <i>INHA</i>, <i>NMBR</i>, <i>NK3R</i>, and <i>DSG2</i>) linked to egg-laying traits in Sichuan White geese. Integrated GO and KEGG enrichment analysis conducted to explore the role of regulatory networks of epigenetic modification on egg-laying traits in Sichuan White geese identified multiple metabolic pathways associated with egg-laying traits (promoting egg transport, ovulation, and yolk protein synthesis and secretion), thus providing a basis for subsequent functional verification.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14020154","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the impact of epigenetic modifications on egg-laying traits in geese, we employed genome-wide bisulfite sequencing (WGBS) to analyze DNA methylation patterns in pituitary tissues of high-(HYP) and low-yield (LYP) Sichuan White geese. We achieved high-quality sequencing data (mean 19.09 Gb raw reads, 15.49 Gb clean reads, 79.1% unique mapping rate) with a bisulfite conversion efficiency of 99.88%. Comparative analysis revealed 2394 differentially methylated regions (DMRs) and 422 differentially methylated genes (DMGs) between HYP and LYP groups. We identified five key differentially methylated candidate genes (BMPER, INHA, NMBR, NK3R, and DSG2) linked to egg-laying traits in Sichuan White geese. Integrated GO and KEGG enrichment analysis conducted to explore the role of regulatory networks of epigenetic modification on egg-laying traits in Sichuan White geese identified multiple metabolic pathways associated with egg-laying traits (promoting egg transport, ovulation, and yolk protein synthesis and secretion), thus providing a basis for subsequent functional verification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信