{"title":"Difference Analysis Among Six Kinds of Acceptor Splicing Sequences by the Dispersion Features of 6-mer Subsets in Human Genes.","authors":"Yangming Si, Hong Li, Xiaolong Li","doi":"10.3390/biology14020206","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying the sequence composition of different splicing modes is a challenge in current research. This study explored the dispersion distributions of 6-mer subsets in human acceptor splicing regions. Without differentiating acceptor splicing modes, obvious differences were observed across the upstream, core, and downstream regions of splicing sites for 16 dispersion distributions. These findings indicate that the dispersion value of each subset can effectively characterize the compositional properties of splicing sequences. When acceptor splicing sequences were classified into common, constitutive, and alternative modes, the differences in dispersion distributions for most of the XY1 6-mer subsets were significant among the three splicing modes. Furthermore, the alternative splicing mode was classified into normal, exonic, and intronic sub-modes, the differences in dispersion distributions for most of the XY1 6-mer subsets were also significant among the three splicing sub-modes. Our results indicate that dispersion values of XY1 6-mer subsets not only revealed the sequence composition patterns of acceptor splicing regions but also effectively identified the differences in base correlation among various acceptor splicing modes. Our research provides new insights into revealing and predicting different splicing modes.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14020206","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying the sequence composition of different splicing modes is a challenge in current research. This study explored the dispersion distributions of 6-mer subsets in human acceptor splicing regions. Without differentiating acceptor splicing modes, obvious differences were observed across the upstream, core, and downstream regions of splicing sites for 16 dispersion distributions. These findings indicate that the dispersion value of each subset can effectively characterize the compositional properties of splicing sequences. When acceptor splicing sequences were classified into common, constitutive, and alternative modes, the differences in dispersion distributions for most of the XY1 6-mer subsets were significant among the three splicing modes. Furthermore, the alternative splicing mode was classified into normal, exonic, and intronic sub-modes, the differences in dispersion distributions for most of the XY1 6-mer subsets were also significant among the three splicing sub-modes. Our results indicate that dispersion values of XY1 6-mer subsets not only revealed the sequence composition patterns of acceptor splicing regions but also effectively identified the differences in base correlation among various acceptor splicing modes. Our research provides new insights into revealing and predicting different splicing modes.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.